Penerapan Information Gain Untuk Seleksi Fitur Pada Algoritma Naïve Bayes Untuk Analisis Sentimen Identitas Kependudukan Digital

Authors

  • Yuliana Nogo Welan Institut Keguruan dan Teknologi Larantuka
  • Alfian Nara Weking Institut Keguruan dan Teknologi Larantuka
  • Dominikus Boli Watomakin Institut Keguruan dan Teknologi Larantuka

DOI:

https://doi.org/10.55606/teknik.v5i2.7433

Keywords:

Analisis Sentimen, Information Gain, Naïve Bayes, Seleksi Fitur, SMOTE

Abstract

The rise of digital technology has driven the Indonesian government to implement Digital Population Identity (IKD) as a solution to enhance public services. However, user reviews on Google Play Store show diverse responses, requiring sentiment analysis to understand public perception. This study aims to improve sentiment classification accuracy on IKD app reviews using the Naïve Bayes algorithm optimized with Information Gain feature selection. The dataset consists of 1,000 Indonesian-language reviews manually labeled and preprocessed using text cleaning and TF-IDF feature representation. To address class imbalance, the SMOTE technique was applied. Experiments were conducted by comparing models without feature selection and balancing against those using Information Gain and SMOTE. Results indicate that the combination of Information Gain and SMOTE significantly enhances model performance, achieving 68,5% accuracy and 53,0% positive F1-Score. These findings confirm that Information Gain is effective in improving sentiment classification efficiency and accuracy. This study provides valuable insights for developing strategies to improve digital service quality.

Kata kunci: Analisis Sentimen, Information Gain, Naïve Bayes, Seleksi Fitur, SMOTE.

 

References

Afifi, W. (2022). Analisis sentimen pengguna twitter terhadap layanan internet pt indosat tbk dengan metode k-nearest neighbor (k-nn) dan naive bayes classifier (nbc). In Repository.Uinjkt.Ac.Id.

Edwar, E., Semadi, I. G. A. N. R., Samsudin, M., & Dharmendra, I. K. (2023). Perbandingan Metode Seleksi Fitur Pada Analisis Sentimen (Studi Kasus Opini PILKADA DKI 2017). INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, 8(1), 11. https://doi.org/10.51211/itbi.v8i1.2408

Farhan, A., Rahman, A. Y., Informatika, T., Malang, U. W., & Store, G. P. (2025). DIGITAL DI GOOGLE PLAY STORE DENGAN BERT. 9(3), 3776–3783.

Harahap, R. habibie. (2021). analisis sentimen pembelajaran daring pada mahasiswa menggunakan metode maximum entropy dengan seleksi fitur information gain.

Lestari, R. A., Erfina, A., & Jatmiko, W. (2023). Penerapan Algoritma Support Vector Machine pada Analisis Sentimen Terhadap Identitas Kependudukan Digital. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(5), 1063–1070. https://doi.org/10.25126/jtiik.20231057264

Priyanto, A., & Ma’arif, M. R. (2018). Implementasi Web Scrapping dan Text Mining untuk Akuisisi dan Kategorisasi Informasi dari Internet (Studi Kasus: Tutorial Hidroponik). Indonesian Journal of Information Systems, 1(1), 25–33. https://doi.org/10.24002/ijis.v1i1.1664

Romzi1, M., & Budi Kurniawan2. (2018). Implementasi Pemrograman Python Menggunakan Visual Studio Code. Unnes, 1–76. https://journal.unmaha.ac.id/index.php/jik/article/view/198/176

Utami, L. D., Tinggi, S., Informatika, M., Komputer, D., Mandiri, N., & Wahono, R. S. (2015). Integrasi Metode Information Gain Untuk Seleksi Fitur dan Adaboost Untuk Mengurangi Bias Pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naïve Bayes. Journal of Intelligent Systems, 1(2). http://journal.ilmukomputer.org

Wahyuningsih, N., & Hendry, H. (2023). Perbandingan Metode Klasifikasi Dalam Analisis Sentimen Masyarakat Terhadap Identitas Kependudukan Digital (Ikd). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(4), 1218–1227. https://doi.org/10.29100/jipi.v8i4.4155

Yunarfi, G. R., Ricky Simdy, & Jackson. (2021). Implementasi Text Mining untuk Mengetahui Kata Abreviasi dalam Percakapan Media Sosial. Journal of Digital Ecosystem for Natural Sustainability (JoDENS), 1(2), 78–83.

Downloads

Published

2025-07-11

How to Cite

Yuliana Nogo Welan, Alfian Nara Weking, & Dominikus Boli Watomakin. (2025). Penerapan Information Gain Untuk Seleksi Fitur Pada Algoritma Naïve Bayes Untuk Analisis Sentimen Identitas Kependudukan Digital. Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 5(2), 84–96. https://doi.org/10.55606/teknik.v5i2.7433

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.