Diagnosis Gangguan Tidur Berdasarkan Gaya Hidup Menggunakan Algoritma Naïve Bayes

Authors

  • Magdalena Herlin Wungubelen Institut Keguruan dan Teknologi Larantuka
  • Alfian Nara Weking Institut Keguruan Dan teknologi Larantuka
  • Dominikus Boli Watomakin Institut Keguruan Dan Teknologi Larantuka

DOI:

https://doi.org/10.55606/teknik.v5i2.7609

Keywords:

Gangguan Tidur Gaya Hidup, Naive Bayes Klasifikasi Rekomendasi Pencegahan

Abstract

Abstract. Sleep disorders are health problems that often arise due to unhealthy lifestyle patterns and are often overlooked for their impact. This study aims to help detect the risk of sleep disorders using the Naive Bayes algorithm. Data were collected through interviews and examinations, then processed with preprocessing and testing data and achieved a classification accuracy of 88.6% for three categories: Normal, Insomnia, and Sleep Apnea. These results support the application of the Naive Bayes algorithm as a supportive diagnostic method based on lifestyle factors. This finding is also expected to serve as a basis for providing lifestyle improvement recommendations to prevent the risk pf sleep disorders.

References

Adolph, Ralph. 2016. “済無No Title No Title No Title.” 1–23.

Basuki Rahman, Usep, Handoyo, and Pujo Rohadi. 2012. “Hubungan Obesitas Dengan Risiko Obstructive Sleep Apnea (Osa) Pada Remaja.” Jurnal Ilmiah Kesehatan Keperawatan 8(1):44–56.

Devita, Riri Nada, Heru Wahyu Herwanto, and Aji Prasetya Wibawa. 2018. “Perbandingan Kinerja Metode Naive Bayes Dan K-Nearest Neighbor Untuk Klasifikasi Artikel Berbahasa Indonesia.” Jurnal Teknologi Informasi Dan Ilmu Komputer 5(4):427–34.

Fernando, Renaldo and Ridha Hidayat. 2020. “Hubungan Lama Penggunaan Media Sosial Dengan Kejadian Insomnia Pada Mahasiswa Fakultas Ilmu Kesehatan Universitas Pahlawan Tuanku Tambusai Tahun 2020.” Jurnal Ners 4(2):84.

FITRIANI, D. 2021. “Pengaruh Gaya Hidup Dan Literasi Keuangan Terhadap Perilaku Konsumtif Belanja Online Pada Generasi Milenial Di Kabupaten ….” Jurnal Riset Sains Manajemen 2(3):103–10.

Khasanah, Nurul, Daniati Uki, Eka Saputri, Faruq Aziz, and Taopik Hidayat. 2025. “Studi Perbandingan Algoritma Random Forest Dan K-Nearest Neighbors ( KNN ) Dalam Klasifikasi Gangguan Tidur.” 5(1):17–25.

Nisa, Indah Chairun. 2024. “Penerapan Algoritma K-Means Dalam Pengkategorian Insomnia.” METHOMIKA Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi 8(1):117–22.

Permana, Akbar Satria, Rebecca Sihite, Karenina Safitri, and Muhammad Raihan Aly. 2023. “Hubungan Pola Tidur Terhadap Potensi Penyakit Diabetes Di Usia Muda Pada Mahasiswa Universitas Negeri Semarang.” Jurnal Analis 2(2):115–23.

Radityo, Wyn Eko. 2012. “Depresi Dan Gangguan Tidur.” E-Jurnal Medika Udayana 1 (1):1–16.

Surya, Defrima Oka and Ria Desnita. 2019. “Efektifitas Akupresur Terhadap Derajat Restless Leg Syndrome Pada Pasien Yang Menjalani Hemodialisis.” JURNAL KESEHATAN PERINTIS (Perintis’s Health Journal) 6(2):104–9.

Zaini, Mimi Fitriana and Niloufar Heshmati Manesh. 2020. “The Impact of Dance on the Development of Coping Mechanisms Fornarcolepsy: A Narrative Analysis.” Jurnal Ilmiah Peuradeun 8(1):17–36.

Downloads

Published

2025-07-24

How to Cite

Magdalena Herlin Wungubelen, Alfian Nara Weking, & Dominikus Boli Watomakin. (2025). Diagnosis Gangguan Tidur Berdasarkan Gaya Hidup Menggunakan Algoritma Naïve Bayes. Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 5(2), 281–293. https://doi.org/10.55606/teknik.v5i2.7609

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)