Optimasi Algoritma Random Forest Untuk Deteksi Jenis Kendaraan Pada Sistem Pemantauan Lalu Lintas

Authors

  • Nur Azizah STKIP PGRI Situbondo
  • Nisfa Daud Supu Universitas Negeri Gorontalo
  • Zainul Munawwir STKIP PGRI Situbondo
  • Firman Jaya STKIP PGRI Situbondo
  • Rahmat Shofan Razaqi STKIP PGRI Situbondo
  • Anis Febriyanti STKIP PGRI Situbondo

Keywords:

Deteksi Kendaraan, Klasifikasi Kendaraan, Pemantauan Lalu Lintas, Random Forest

Abstract

Abstrak. Peningkatan volume lalu lintas di kota-kota besar, khususnya di Indonesia, telah menyebabkan masalah seperti kemacetan, kecelakaan, dan polusi. Salah satu tantangan utama adalah deteksi otomatis dan klasifikasi jenis kendaraan dalam sistem pemantauan lalu lintas. Sistem pemantauan yang efektif tidak hanya memonitor jumlah kendaraan tetapi juga secara akurat mengidentifikasi jenis kendaraan dalam kondisi lalu lintas yang dinamis. Penelitian ini bertujuan untuk mengoptimalkan algoritma Random Forest untuk mendeteksi jenis kendaraan dengan akurasi yang tinggi pada sistem pemantauan lalu lintas berbasis citra. Metode penelitian meliputi pengumpulan data citra kendaraan dari kamera pengawas, pra-pemrosesan citra, ekstraksi fitur, penerapan algoritma Random Forest, dan evaluasi kinerja model dengan menggunakan metrik seperti akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa algoritma Random Forest dapat mengklasifikasikan jenis kendaraan dengan akurasi sebesar 92%, dengan F1-score yang baik pada setiap kategori kendaraan, yaitu mobil (0.91), motor (0.94), truk (0.89), dan bus (0.93). Pengujian hyperparameter menunjukkan bahwa jumlah pohon yang lebih banyak dan kedalaman pohon yang lebih besar meningkatkan kinerja model. Namun, tantangan yang berkaitan dengan kondisi cuaca dan kualitas citra tetap menjadi perhatian. Penelitian ini menyimpulkan bahwa algoritma Random Forest memiliki potensi besar untuk diaplikasikan dalam sistem pemantauan lalu lintas untuk meningkatkan efisiensi dan akurasi deteksi kendaraan secara real-time.

References

S. Rajagopal,M. et, al. Ensemble Random Forest-based Gradient Optimization based Energy Efficient Video Processing System for Smart Traffic Surveillance System. DOI : 10.1080/03772063.2024.2350927

Grzegorz Wieczorek, et, al. Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization. DOI : 10.3390/s23031731

Revanth Dugalam and Guru Prakash. Development of a random forest based algorithm for road health monitoring. DOI : 10.1016/j.eswa.2024.123940

Chunying Zhang, et, al. Three-Way Selection Random Forest Optimization Model for Anomaly Traffic Detection. DOI : 10.3390/electronics12081788

Presitha Aarthi M, et, al. Cloud-Based Road Safety for Real-Time Vehicle Rash Driving Alerts with Random Forest Algorithm. DOI : 10.1109/INOCON60754.2024.10511316

Miaomiao Yan and Yindong Shen. Traffic Accident Severity Prediction Based on Random Forest. DOI : 10.3390/su14031729

Hamed Khajavi and Amir Rastgoo. Predicting the carbon dioxide emission caused by road transport using a Random Forest (RF) model combined by Meta-Heuristic Algorithms. DOI : 10.1016/j.scs.2023.104503

Qiang Shang, et, al. A Hybrid Method for Traffic Incident Duration Prediction Using BOA-Optimized Random Forest Combined with Neighborhood Components Analysis. DOI : 10.1155/2019/4202735

Myounggyu Won. Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey. DOI : 10.1109/ACCESS.2020.2987634

Sunkara Teena Mrudula, et, al. Internet of things and optimized knn based intelligent transportation system for traffic flow prediction in smart cities. DOI : 10.1016/j.measen.2024.101297

Yetay Berhanu, et, al. Examining Car Accident Prediction Techniques and Road Traffic Congestion: A Comparative Analysis of Road Safety and Prevention of World Challenges in Low-Income and High-Income Countries. DOI : 10.1155/2023/6643412

Benjamin Sliwa, et, al. The Channel as a Traffic Sensor: Vehicle Detection and Classification Based on Radio Fingerprinting. DOI: 10.1109/JIOT.2020.2983207

Amit Kumar Balyan, et, al. A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method. DOI : 10.3390/s22165986

Sangmin Lee, et, al. Intelligent traffic control for autonomous vehicle systems based on machine learning. DOI : 10.1016/j.eswa.2019.113074

Tuo Mao, et, al. Boosted Genetic Algorithm Using Machine Learning for Traffic Control Optimization. DOI: 10.1109/TITS.2021.3066958

Ibrahim Hayatu Hassan, et, al. An improved binary manta ray foraging optimization algorithm based feature selection and random forest classifier for network intrusion detection. DOI : 10.1016/j.iswa.2022.200114

Jing Gan, et, al. An Alternative Method for Traffic Accident Severity Prediction: Using Deep Forests Algorithm.DOI : 10.1155/2020/1257627

Ali Raza, et, al. Multiple Pedestrian Detection and Tracking in Night Vision Surveillance Systems. DOI: 10.32604/cmc.2023.029719

Nour El Islem Karabadji, et, al.Accuracy and diversity-aware multi-objective approach for random forest construction. DOI :10.1016/j.eswa.2023.120138

Mince Li, et, al. Sizing Optimization and Energy Management Strategy for Hybrid Energy Storage System Using Multiobjective Optimization and Random Forests. DOI : 10.1109/TPEL.2021.3070393

Preeti Rani and Rohit Sharma. Intelligent transportation system for internet of vehicles based vehicular networks for smart cities. DOI : 10.1016/j.compeleceng.2022.108543

K. Balasubadra, et, al. Real-time Glass Recycling Quality Assurance and Contamination Reduction with IoT and Random Forest algorithm. DOI : 10.1109/ICICT60155.2024.10544632

Oche Alexander Egaji, et, al. Real-time machine learning-based approach for pothole detection. DOI : 10.1016/j.eswa.2021.115562

Muammer Türkoğlu , et, al. Recognition of DDoS attacks on SD-VANET based on combination of hyperparameter optimization and feature selection. DOI : 10.1016/j.eswa.2022.117500

Vittorio Astarita, et, al. Developing new hybrid grey wolf optimization-based artificial neural network for predicting road crash severity. DOI : 10.1016/j.treng.2023.100164

RVS Praveen, et, al. Autonomous Vehicle Navigation Systems: Machine Learning for Real-Time Traffic Prediction. DOI : 10.1109/ICCCIT62592.2025.10927797

Amel Ali Alhussan, et, al. Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars. DOI : 10.1109/ACCESS.2022.3196660

Downloads

Published

2025-07-24

How to Cite

Nur Azizah, Nisfa Daud Supu, Zainul Munawwir, Firman Jaya, Rahmat Shofan Razaqi, & Anis Febriyanti. (2025). Optimasi Algoritma Random Forest Untuk Deteksi Jenis Kendaraan Pada Sistem Pemantauan Lalu Lintas . Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 5(2), 294–308. Retrieved from https://researchhub.id/index.php/teknik/article/view/7235

Similar Articles

You may also start an advanced similarity search for this article.