Implementasi Random Forest Untuk Identifikasi Jenis Sampah Organik Dan Non-Organik

Authors

  • Helminda Yeni Da Silva Institut Keguruan Dan Teknologi Larantuka
  • Alfian Nara Weking Institut Keguruan Dan Teknologi Larantuka
  • Dominikus Boli Watomakin Institut Keguruan Dan Teknologi Larantuka

DOI:

https://doi.org/10.55606/teknik.v5i2.7612

Keywords:

Sampah Organik dan Non-Organik, klasifikasi sampah, Random Forest

Abstract

Abstract. Waste is a growing environmental problem, especially if it is not managed properly starting from the sorting process. One effort to improve the effectiveness of waste management is through automatic identification of waste types. This study aims to implement the Random Forest algorithm in the process of classifying waste into two categories: organic and non-organic waste. The data used are waste images that have gone through the preprocessing stage and the extraction of color and texture features. The Random Forest model was chosen because it has advantages in handling diverse data and providing stable classification results. Test results show that this model is capable of classifying with a fairly good level of accuracy, with the highest accuracy of 87% on the test data. In addition, this model is also integrated into a mobile application to facilitate users in identifying waste types in real-time. This implementation is expected to help the community sort waste more efficiently and contribute to sustainable environmental management.

References

Alden, Sita, and Betha Nurina Sari. 2023. “Implementasi Algoritma CNN Untuk Pemilahan Jenis Sampah Berbasis Android Dengan Metode CRISP-DM.” Jurnal Informatika 10(1):62–71. doi: 10.31294/inf.v10i1.14985.

Andi Muhammad Akbar, Muhammad Basri, and Wahyuddin Wahyuddin. 2025. “Implementasi Machine Learning Menggunakan Algoritma Klasifikasi Untuk Mendeteksi Jenis Sampah.” Jurnal Publikasi Manajemen Informatika 3(3):152–61. doi: 10.55606/jupumi.v3i3.3751.

Apel, Daun, Departemen Matematika, Fakultas Matematika, and Sains Data. 2019. “Penerapan Random Forest Untuk Mengukur Tingkat Keparahan Penyakit.” 8(2).

Ashfania, Ghiffari Awliya Muhammad, Toni Prahasto, Achmad Widodo, and Tarwaji Warsokusumo. 2022. “Penggunaan Algoritma Random Forest Untuk Klasifikasi Berbasis Kinerja Efisiensi Energi Pada Sistem Pembangkit Daya.” Rotasi 24(3):14–21.

Aziz, W. A. 2021. Implementasi Metode Random Forest Pada Klasifikasi Data Ulasan Konsumen Perusahaan (Studi Kasus: Aplikasi Kai Access).

Dewi, Nariswari Karina, Soni Yadi Mulyadi, and Utami Dyah Syafitri. 2012. “Penerapan Metode Random Forest Dalam Driver Analysis.” Forum Statistika Dan Komputasi 16(1):35–43.

Fadli, Muhamad, and Rizal Adi Saputra. 2023. “Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke.” JT: Jurnal Teknik 12(2):72–80.

Ibnul Rasidi, Abdurrahman, Yolanda Al Hidayah Pasaribu, Afzal Ziqri, and Faisal Dharma Adhinata. 2022. “Klasifikasi Sampah Organik Dan Non-Organik Menggunakan Convolutional Neural Network.” Jurnal Teknik Informatika Dan Sistem Informasi 8(1):142–49. doi: 10.28932/jutisi.v8i1.4314.

Imbarraga dan Reinaldi, Radhya Prakasa Imbarraga dan Harry. 2019. “Universitas Pasundan.” Kebudayaan (022):1–47.

Kurniawan, Ilham, Duwi Cahya Putri Buani, Abdussomad Abdussomad, Widya Apriliah, and Rizal Amegia Saputra. 2023. “Implementasi Algoritma Random Forest Untuk Menentukan Penerima Bantuan Raskin.” Jurnal Teknologi Informasi Dan Ilmu Komputer 10(2):421–28. doi: 10.25126/jtiik.20231026225.

Maulidah, Nurlaelatul, Mawadatul Maulidah, Riki Supriyadi, Hiya Nalatissifa, Sri Diantika, and Ahmad Fauzi. 2024. “Prediksi Kualitas Air Menggunakan Metode Random Forest, Decision Tree, Dan Gradient Boosting.” Jurnal Khatulistiwa Informatika 12(1):1–6. doi: 10.31294/jki.v12i1.16004.

Posangi, Tiara, Lailany Yahya, and Djihad Wungguli. 2023. “Implementasi Algoritma Random Forest Dengan Forward Selection Untuk Klasifikasi Indeks Pembangunan Manusia.” Jambura Journal of Probability and Statistics 4(2):85–91. doi: 10.37905/jjps.v4i2.18460.

Sahibu, Supriadi, and Imran Taufik. 2024. “Implementation of the Convolutional Neural Network Algorithm for Classifying Types of Organic and Non-Organic Waste Implementasi Algoritma Convolutional Neural Network Untuk Klasifikasi Jenis Sampah Organik Dan Non Organik.” 4(July):840–52.

Siburian, Vanissa Wanika, and Ika Elvina Mulyana. 2018. “Prediksi Harga Ponsel Menggunakan Metode Random Forest.” Annual Research Seminar (ARS) 2018 4(1):144–47.

Downloads

Published

2025-07-23

How to Cite

Helminda Yeni Da Silva, Alfian Nara Weking, & Dominikus Boli Watomakin. (2025). Implementasi Random Forest Untuk Identifikasi Jenis Sampah Organik Dan Non-Organik. Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 5(2), 216–228. https://doi.org/10.55606/teknik.v5i2.7612

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)