Penerapan Information Gain Untuk Seleksi Fitur Pada Algoritma Naïve Bayes Untuk Analisis Sentimen Identitas Kependudukan Digital
DOI:
https://doi.org/10.55606/teknik.v5i2.7433Keywords:
Analisis Sentimen, Information Gain, Naïve Bayes, Seleksi Fitur, SMOTEAbstract
The rise of digital technology has driven the Indonesian government to implement Digital Population Identity (IKD) as a solution to enhance public services. However, user reviews on Google Play Store show diverse responses, requiring sentiment analysis to understand public perception. This study aims to improve sentiment classification accuracy on IKD app reviews using the Naïve Bayes algorithm optimized with Information Gain feature selection. The dataset consists of 1,000 Indonesian-language reviews manually labeled and preprocessed using text cleaning and TF-IDF feature representation. To address class imbalance, the SMOTE technique was applied. Experiments were conducted by comparing models without feature selection and balancing against those using Information Gain and SMOTE. Results indicate that the combination of Information Gain and SMOTE significantly enhances model performance, achieving 68,5% accuracy and 53,0% positive F1-Score. These findings confirm that Information Gain is effective in improving sentiment classification efficiency and accuracy. This study provides valuable insights for developing strategies to improve digital service quality.
Kata kunci: Analisis Sentimen, Information Gain, Naïve Bayes, Seleksi Fitur, SMOTE.
References
Afifi, W. (2022). Analisis sentimen pengguna twitter terhadap layanan internet pt indosat tbk dengan metode k-nearest neighbor (k-nn) dan naive bayes classifier (nbc). In Repository.Uinjkt.Ac.Id.
Edwar, E., Semadi, I. G. A. N. R., Samsudin, M., & Dharmendra, I. K. (2023). Perbandingan Metode Seleksi Fitur Pada Analisis Sentimen (Studi Kasus Opini PILKADA DKI 2017). INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, 8(1), 11. https://doi.org/10.51211/itbi.v8i1.2408
Farhan, A., Rahman, A. Y., Informatika, T., Malang, U. W., & Store, G. P. (2025). DIGITAL DI GOOGLE PLAY STORE DENGAN BERT. 9(3), 3776–3783.
Harahap, R. habibie. (2021). analisis sentimen pembelajaran daring pada mahasiswa menggunakan metode maximum entropy dengan seleksi fitur information gain.
Lestari, R. A., Erfina, A., & Jatmiko, W. (2023). Penerapan Algoritma Support Vector Machine pada Analisis Sentimen Terhadap Identitas Kependudukan Digital. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(5), 1063–1070. https://doi.org/10.25126/jtiik.20231057264
Priyanto, A., & Ma’arif, M. R. (2018). Implementasi Web Scrapping dan Text Mining untuk Akuisisi dan Kategorisasi Informasi dari Internet (Studi Kasus: Tutorial Hidroponik). Indonesian Journal of Information Systems, 1(1), 25–33. https://doi.org/10.24002/ijis.v1i1.1664
Romzi1, M., & Budi Kurniawan2. (2018). Implementasi Pemrograman Python Menggunakan Visual Studio Code. Unnes, 1–76. https://journal.unmaha.ac.id/index.php/jik/article/view/198/176
Utami, L. D., Tinggi, S., Informatika, M., Komputer, D., Mandiri, N., & Wahono, R. S. (2015). Integrasi Metode Information Gain Untuk Seleksi Fitur dan Adaboost Untuk Mengurangi Bias Pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naïve Bayes. Journal of Intelligent Systems, 1(2). http://journal.ilmukomputer.org
Wahyuningsih, N., & Hendry, H. (2023). Perbandingan Metode Klasifikasi Dalam Analisis Sentimen Masyarakat Terhadap Identitas Kependudukan Digital (Ikd). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(4), 1218–1227. https://doi.org/10.29100/jipi.v8i4.4155
Yunarfi, G. R., Ricky Simdy, & Jackson. (2021). Implementasi Text Mining untuk Mengetahui Kata Abreviasi dalam Percakapan Media Sosial. Journal of Digital Ecosystem for Natural Sustainability (JoDENS), 1(2), 78–83.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Mesin, Elektro dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.