Optimalisasi Infrastruktur Cloud Networking melalui Integrasi SDN, NFV, dan Multi-Cloud
DOI:
https://doi.org/10.55606/jitek.v5i1.6099Keywords:
Cloud networking, SDN, NFV, hybrid cloud, multi-cloud.Abstract
Cloud networking is a crucial element in the management of modern computer network infrastructure because it can increase service efficiency and flexibility. However, the successful implementation of cloud networking is highly dependent on the network architecture that supports optimal performance. This research conducted a literature study to review the development of computer network architectures that facilitate the implementation of cloud networking, by reviewing more than 50 recent publications related to software-defined networking (SDN), network function virtualization (NFV), and hybrid and multi-cloud models. The review shows that the integration of SDN and NFV is a major trend for designing adaptive and cost-effective network architectures, while the combination of hybrid and multi-cloud models improves scalability and redundancy. In conclusion, the adoption of SDN-NFV technology and mixed cloud deployment strategies have proven effective in optimizing the performance and management of cloud-based networks.
References
[1] X. Wen, Z. Phan, Y. Cao, P. Wan, W. Zheng, and Y. Liu, "PMP-Net++: Point Cloud Completion by Transformer-Enhanced Multi-Step Point Moving Paths," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 852-867, 2023, doi: 10.1109/TPAMI.2022.3159003.
[2] Y. Gao, X. Liu, J. Li, Z. Fang, X. Jiang, dan K. Huq, "LFT-Net: Local Feature Transformer Network for Point Clouds Analysis," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2158-2168, 2023, doi: 10.1109/TITS.2022.3140355.
[3] X. Zhu dan C. Jiang, "Delay Optimization for Cooperative Multi-Tier Computing in Integrated Satellite-Terrestrial Networks," IEEE Journal on Selected Areas in Communications, vol. 41, no. 2, pp. 366-380, 2023, doi: 10.1109/JSAC.2022.3227083.
[4] Y. Wu, Y. Zhang, and W. Ma, “RORNet: Partial-to-partial registration network with reliable overlapping representations,” IEEE Transactions on Neural Networks and Learning Systems, 2023, doi: 10.1109/TNNLS.2023.3286943.
[5] J. Alzubi, O. Alzubi, and A. Singh, “Cloud-IIoT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning,” IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 1080–1087, 2023, doi: 10.1109/TII.2022.3189170.
[6] Z. Xu, D. He, and P. Vijayakumar, “Certificateless public auditing scheme with data privacy and dynamics in group user model of cloud-assisted medical WSNs,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 5, pp. 2334–2344, 2023, doi: 10.1109/JBHI.2021.3128775.
[7] Y. Xiao, Z. Sun, and G. Shi, “Imitation learning-based implicit semantic-aware communication networks: Multi-layer representation and collaborative reasoning,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 3, pp. 639–658, 2023, doi: 10.1109/JSAC.2022.3229419.
[8] Y. Liu and J. Zhang, “Service function chain embedding meets machine learning: Deep reinforcement learning approach,” IEEE Transactions on Network and Service Management, vol. 21, no. 3, pp. 3465–3481, 2024, doi: 10.1109/TNSM.2024.3353808.
[9] C. Huang, F. Jiang, and Q. Huang, “Dual-graph attention convolution network for 3-D point cloud classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 4, pp. 4813–4825, 2024, doi: 10.1109/TNNLS.2022.3162301.
[10] M. Zhang, J. Cao, Y. Sahni et al., “Blockchain-based collaborative edge intelligence for trustworthy and real-time video surveillance,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1623–1633, 2023, doi: 10.1109/TII.2022.3203397.
[11] H. C. Luan, T. Lu, R. et al., “Security and Privacy in Vehicular Digital Twin Networks: Challenges and Solutions,” IEEE Wireless Communications, vol. 30, no. 4, pp. 154–160, 2023, doi: 10.1109/MWC.002.2200015.
[12] A. Bashir, N. Victor, S. Bhattacharya, et al., “Federated Learning for the Healthcare Metaverse: Concepts, Applications, Challenges, and Future Directions,” IEEE Internet of Things Journal, vol. 10, no. 24, pp. 21873–21891, 2023, doi: 10.1109/JIOT.2023.3304790.
[13] K. Lu, L. Zhou, and Z. Wu, “Representation-Learning-Based CNN for Intelligent Attack Localization and Recovery of Cyber-Physical Power Systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, 2023, doi: 10.1109/TNNLS.2023.3257225.
[14] G. Chen, L. Li, Y. Dai, J. Zhang, and M. Yap, “AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images,” IEEE Transactions on Medical Imaging, vol. 42, no. 5, pp. 1289–1300, 2023, doi: 10.1109/TMI.2022.3226268.
[15] S. A. Munikoti, D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan, “Challenges and Opportunities in Deep Reinforcement Learning With Graph Neural Networks: A Comprehensive Review of Algorithms and Applications,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 11, pp. 15051–15071, 2024, doi: 10.1109/TNNLS.2023.3283523.
[16] D. Ye, Z. Ni, H. Wang, J. Zhang, S. Wang, and S. Kwong, “CSformer: Bridging Convolution and Transformer for Compressive Sensing,” IEEE Transactions on Image Processing, vol. 32, pp. 2827–2842, 2023, doi: 10.1109/TIP.2023.3274988.
[17] J. Lin, J. Lin, C. Lu, H. Chen, H. Lin, B. Zhao, Z. Shi, B. Qiu, X. Pan, Z. Xu, B. Huang, C. Liang, G. Han, Z. Liu, and C. Han, “CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with Modality-Correlated Cross-Attention for Brain Tumor Segmentation,” IEEE Transactions on Medical Imaging, vol. 42, no. 8, pp. 2451–2461, 2023, doi: 10.1109/TMI.2023.3250474.
[18] A. He, K. Wang, T. Li, C. Du, S. Xia, and H. Fu, “H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation,” IEEE Transactions on Medical Imaging, vol. 42, no. 9, pp. 2763–2775, 2023, doi: 10.1109/TMI.2023.3264513.
[19] X. Gao, H. Cai, and M. Liu, “A Hybrid Multi-Scale Attention Convolution and Aging Transformer Network for Alzheimer’s Disease Diagnosis,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 7, pp. 3292–3301, 2023, doi: 10.1109/JBHI.2023.3270937.
[20] M. Bakro, R. Kumar, A. Alabrah, Z. Ashraf, M. Ahmed, M. Shameem, and A. Abdelsalam, “An Improved Design for a Cloud Intrusion Detection System Using Hybrid Features Selection Approach With ML Classifier,” IEEE Access, vol. 11, pp. 64228–64247, 2023, doi: 10.1109/ACCESS.2023.3289405.
[21] M. Sajid, K. Malik, A. Almogren, T. Malik, A. Khan, J. Tanveer, and A. Rehman, “Enhancing intrusion detection: a hybrid machine and deep learning approach,” Journal of Cloud Computing, vol. 13, no. 1, 2024, doi: 10.1186/s13677-024-00685-x.
[22] S. Alsubai, A. Dutta, A. Alkhayyat, M. Jaber, A. Abbas, and A. Kumar, “Hybrid deep learning with improved Salp swarm optimization based multi-class grape disease classification model,” Computers and Electrical Engineering, vol. 108, 2023, doi: 10.1016/j.compeleceng.2023.108733.
[23] D. Saxena, I. Gupta, R. Gupta, A. Singh, and X. Wen, “An AI-Driven VM Threat Prediction Model for Multi-Risks Analysis-Based Cloud Cybersecurity,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 11, pp. 6815–6827, 2023, doi: 10.1109/TSMC.2023.3288081.
[24] Z. Bai, Y. Lin, Y. Cao, and W. Wang, “Delay-Aware Cooperative Task Offloading for Multi-UAV Enabled Edge-Cloud Computing,” IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1034–1049, 2024, doi: 10.1109/TMC.2022.3232375.
[25] C. Sun, X. Wu, X. Li, Q. Fan, J. Wen, and V. Leung, “Cooperative Computation Offloading for Multi-Access Edge Computing in 6G Mobile Networks via Soft Actor Critic,” IEEE Transactions on Network Science and Engineering, vol. 11, no. 6, pp. 5601–5614, 2024, doi: 10.1109/TNSE.2021.3076795.
[26] R. Ferreira, C. Ranaweera, K. Lee, dan J. Schneider, “Energy Efficient Node Selection in Edge-Fog-Cloud Layered IoT Architecture,” Sensors, vol. 23, no. 13, 2023, doi: 10.3390/s23136039.
[27] Sun, C., Li, X., Wen, J., Wang, X., Han, Z., & Leung, V., "Federated Deep Reinforcement Learning for Recommendation-Enabled Edge Caching in Mobile Edge-Cloud Computing Networks," IEEE Journal on Selected Areas in Communications, vol. 41, no. 3, pp. 690–705, 2023. doi: 10.1109/JSAC.2023.3235443.
[28] H. Xu, A. Berres, S. Yoginath, H. Sorensen, P. Nugent, J. Severino, S. Tennille, A. Moore, W. Jones, dan J. Sanyal, "Smart Mobility in the Cloud: Enabling Real-Time Situational Awareness and Cyber-Physical Control Through a Digital Twin for Traffic," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 3145–3156, 2023, doi: 10.1109/TITS.2022.3226746.
[29] S. Addya, A. Satpathy, B. Ghosh, S. Chakraborty, S. Ghosh, and S. Das, "CoMCLOUD: Virtual Machine Coalition for Multi-Tier Applications over Multi-Cloud Environments," IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 956-970, 2023. doi: 10.1109/TCC.2021.3122445.
[30] L. Wu, P. Sun, Z. Wang, Y. Li, and Y. Yang, "Computation Offloading in Multi-Cell Networks With Collaborative Edge-Cloud Computing: A Game Theoretic Approach," IEEE Transactions on Mobile Computing, vol. 23, no. 3, pp. 2093-2106, 2024. doi: 10.1109/TMC.2023.3246462.
[31] P. Zhang, N. Chen, G. Xu, N. Kumar, A. Barnawi, M. Guizani, Y. Duan, and K. Yu, "Multi-Target-Aware Dynamic Resource Scheduling for Cloud-Fog-Edge Multi-Tier Computing Network," IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 5, pp. 3885-3897, 2024. doi: 10.1109/TITS.2023.3330419.
[32] T. V. Doan, G. T. Nguyen, [...] F. H. Fitzek, "SAP: Subchain-Aware NFV Service Placement in Mobile Edge Cloud," IEEE Transactions on Network and Service Management, 2023, doi: 10.1109/TNSM.2022.3201388.
[33] G. W. De Oliveira, M. Nogueira, [...] D. M. E. Batista, "Intelligent VNF Placement to Mitigate DDoS Attacks on Industrial IoT," IEEE Transactions on Network and Service Management, 2023, doi: 10.1109/TNSM.2023.3274364.
[34] F. Naeem, M. Ali, dan G. Kaddoum, "Federated-Learning-Empowered Semi-Supervised Active Learning Framework for Intrusion Detection in ZSM," IEEE Communications Magazine, 2023, doi: 10.1109/MCOM.001.2200533.
[35] W. Attaoui, E. Sabir, dan M. Guizani, "VNF and CNF Placement in 5G: Recent Advances and Future Trends," IEEE Transactions on Network and Service Management, 2023, doi: 10.1109/TNSM.2023.3264005.
[36] I. H. Abdulqadder, S. Zhou, dan S. M. A. Akber, "Multi-layered intrusion detection and prevention in the SDN/NFV enabled cloud of 5G networks using AI-based defense mechanisms," Computer Networks, vol. 178, Art. no. 107364, 2020, doi: 10.1016/j.comnet.2020.107364.
[37] R. Lin, S. Yu, Y. Bi, W. Quan, dan M. Zukerman, "Column Generation Based Service Function Chaining Embedding in Multi-Domain Networks," IEEE Transactions on Cloud Computing, vol. 11, no. 1, pp. 3–16, 2023, doi: 10.1109/TCC.2021.3084999.
[38] D. D. N. Nguyen, K. Sood, M. F. Zolkipli, S. Nepal, dan S. Yu, "Toward IoT Node Authentication Mechanism in Next Generation Networks," IEEE Internet of Things Journal, vol. 10, no. 20, pp. 17409–17418, 2023, doi: 10.1109/JIOT.2023.3262822.
[39] Y. Kim, J. Kwak, D. Lee, H. Choo, dan S. Chong, "Dynamic Computation and Network Chaining in Integrated SDN/NFV Cloud Infrastructure," IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 874–887, 2023, doi: 10.1109/TCC.2021.3094681.
[40] S. N. Afrasiabi, A. Ebrahimzadeh, A. M. Vegni, dan R. H. Glitho, "Reinforcement Learning-Based Optimization Framework for Application Component Migration in NFV Cloud-Fog Environments," IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1692–1706, 2023, doi: 10.1109/TNSM.2022.3217723.
[41] M. Dolati, S. H. Rastegar, M. M. Moghaddam, dan M. Ghaderi, "Layer-Aware Containerized Service Orchestration in Edge Networks," IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1234-1247, 2023, doi: 10.1109/TNSM.2022.3217134.
[42] N. M. Yungaicela-Naula, C. Vargas-Rosales, dan J. A. Perez-Diaz, "SDN-based architecture for transport and application layer DDoS attack detection by using machine and deep learning," IEEE Access, vol. 9, pp. 123456–123470, 2021, doi: 10.1109/ACCESS.2021.3101650.
[43] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. M. Arco, dan R. Doriguzzi-Corin, "Hybrid SDN evolution: A comprehensive survey of the state-of-the-art," Computer Networks, vol. 192, 2021, Art. no. 107981, doi: 10.1016/j.comnet.2021.107981.
[44] A. Mohamed, M. Hamdan, S. Khan, A. Abdelaziz, S. F. Babiker, M. Imran, dan M. N. Marsono, "Software-defined networks for resource allocation in cloud computing: A survey," Computer Networks, vol. 192, 2021, Art. no. 108151, doi: 10.1016/j.comnet.2021.108151.
[45] T. V. Doan, G. T. Nguyen, M. Reisslein, dan F. H. Fitzek, "FAST: Flexible and Low-Latency State Transfer in Mobile Edge Computing," IEEE Access, vol. 9, pp. 80835–80850, 2021, doi: 10.1109/ACCESS.2021.3105583.
[46] P. T. Dinh dan M. Park, "R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud through Stochastic Recurrent Neural Network," IEEE Access, vol. 9, pp. 5000–5012, 2021, doi: 10.1109/ACCESS.2021.3061601.
[47] E. P. Neto, F. S. Silva, L. M. Schneider, A. V. Neto, dan R. Immich, "Seamless MANO of multi-vendor SDN controllers across federated multi-domains," Computer Networks, vol. 185, p. 107752, 2021, doi: 10.1016/j.comnet.2020.107752.
[48] S. Sedaghat dan A. Jahangir, "RT-TelSurg: Real Time Telesurgery Using SDN, Fog, and Cloud as Infrastructures," IEEE Access, vol. 9, pp. 52238–52251, 2021, doi: 10.1109/ACCESS.2021.3069744.
[49] J. Okwuibe, J. Haavisto, I. Kovacevic, E. Harjula, I. Ahmad, J. Islam, dan M. Ylianttila, "SDN-Enabled Resource Orchestration for Industrial IoT in Collaborative Edge-Cloud Networks," IEEE Access, vol. 9, pp. 1-17, 2021, doi: 10.1109/ACCESS.2021.3105944.
[50] S. Math, P. Tam, dan S. Kim, "Reliable federated learning systems based on intelligent resource sharing scheme for big data internet of things," IEEE Access, vol. 9, pp. 1-16, 2021, doi: 10.1109/ACCESS.2021.3101871.
[51] M. Wang, Y. Lu, dan J. Qin, "Source-Based Defense Against DDoS Attacks in SDN Based on sFlow and SOM," IEEE Access, vol. 10, pp. 1-14, 2022, doi: 10.1109/ACCESS.2021.3139511.
[52] P. Gao, Y. Xu, dan H. J. Chao, "OVS-CAB: Efficient rule-caching for Open vSwitch hardware offloading," Computer Networks, vol. 190, 2021, Art. no. 107844, doi: 10.1016/j.comnet.2021.107844.
[53] S. M. L. Sindjoung, F. Velempini, dan M. B. A. Bomgni, "A MEC architecture for a better quality of service in an Autonomous Vehicular Network," Computer Networks, vol. 202, p. 109454, 2022, doi: 10.1016/j.comnet.2022.109454.
[54] N. A. Kaci, A. Aklouf, Y. Dutra, dan D. L. C., “Machine learning based fast self optimized and life cycle management network,” Computer Networks, vol. 202, 2022, Art. no. 108895, doi: 10.1016/j.comnet.2022.108895.
[55] S. S. Patra, R. S. Govindaraj, S. Chowdhury, M. A. Shah, R. Patro, dan S. Rout,
"Energy Efficient End Device Aware Solution Through SDN in Edge-Cloud Platform," IEEE Access, vol. 10, pp. 1-13, 2022, doi: 10.1109/ACCESS.2022.3218328.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika Dan Tekonologi Komputer (JITEK)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.