Tinjauan Regulasi Siber dan Kebijakan Keamanan Jaringan 5G: Perspektif Nasional dan Internasional
DOI:
https://doi.org/10.55606/jitek.v5i1.6141Keywords:
Regulasi, keamanan, siber, global, internasionalAbstract
This study discusses 5G network security regulations and policies from a national and international perspective, with a focus on the challenges and handling of global cyber threats. Given the cross-border threats, security and regulation are important issues in the implementation of 5G technology. The approach used is qualitative interpretive with additional limited experiments, including cyber attack simulations. The result of the study show that cyber policies in Indonesia are not yet fully coordinated, unlike countries such as the US, the European Union, and China which have more comprehensive regulations. Experiments prove that the implementation of protocols such as IPSec and TLS can reduce risks in 5G networks. Therefore, Indonesia is advised to form more integrated regulations that comply with international standards. This study also suggests further research in real scenarios and the development of a more in-depth policy evaluation system.
References
[1] N. O’Brien et al., “Strengths, Weaknesses, Opportunities, and Threats Analysis of the Use of Digital Health Technologies in Primary Health Care in the Sub-Saharan African Region: Qualitative Study,” J. Med. Internet Res., vol. 25, no. 1, 2023, doi: 10.2196/45224.
[2] S. Safiuddin and F. P. E. Putra, “Strategi Efisiensi Wireless Sensor Network (WSN),” INFORMATICS Educ. Prof. J. Informatics, vol. 8, no. 1, p. 52, 2023, doi: 10.51211/itbi.v8i1.2441.
[3] S. Saikali, M. Covas Moschovas, A. Gamal, S. Reddy, T. Rogers, and V. Patel, “Telesurgery: humanitarian and surgical benefits while navigating technologic and administrative challenges,” 2024. doi: 10.1007/s11701-024-02156-6.
[4] W. Ouyang et al., “A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals,” Nat. Biomed. Eng., vol. 7, no. 10, pp. 1252–1269, 2023, doi: 10.1038/s41551-023-01029-x.
[5] R. Abbasi, A. K. Bashir, H. J. Alyamani, F. Amin, J. Doh, and J. Chen, “Lidar Point Cloud Compression, Processing and Learning for Autonomous Driving,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 962–979, 2023, doi: 10.1109/TITS.2022.3167957.
[6] A. Karim, M. Shahroz, K. Mustofa, S. B. Belhaouari, and S. R. K. Joga, “Phishing Detection System Through Hybrid Machine Learning Based on URL,” IEEE Access, vol. 11, pp. 36805–36822, 2023, doi: 10.1109/ACCESS.2023.3252366.
[7] J. Schneider and F. Breitinger, “Towards AI forensics: Did the artificial intelligence system do it?,” J. Inf. Secur. Appl., vol. 76, 2023, doi: 10.1016/j.jisa.2023.103517.
[8] A. Kumar, A. Pratap, and A. K. Singh, “Generative Adversarial Neural Machine Translation for Phonetic Languages via Reinforcement Learning,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 1, pp. 190–199, 2023, doi: 10.1109/TETCI.2022.3209394.
[9] J. Sun, Y. Zhai, P. Liu, and Y. Wang, “Memristor-Based Neural Network Circuit of Associative Memory with Overshadowing and Emotion Congruent Effect,” IEEE Trans. Neural Networks Learn. Syst., vol. 36, no. 2, pp. 3618–3630, 2025, doi: 10.1109/TNNLS.2023.3348553.
[10] H. Xu, Z. Sun, Y. Cao, and H. Bilal, “A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things,” Soft Comput., vol. 27, no. 19, pp. 14469–14481, 2023, doi: 10.1007/s00500-023-09037-4.
[11] F. P. E. Putra, D. A. M. Putra, A. Firdaus, and A. Hamzah, “Analisis Kecepatan Dan Kinerja Jaringan 5G (generasi ke 5) Pada Wilayah Perkotaan,” INFORMATICS Educ. Prof. J. Informatics, vol. 8, no. 1, p. 47, 2023, doi: 10.51211/itbi.v8i1.2439.
[12] H. R. Marston et al., “Digital Practices by Citizens During the COVID-19 Pandemic: Findings From an International Multisite Study,” JMIR Ment. Heal., vol. 10, 2023, doi: 10.2196/41304.
[13] R. K. Dubey, N. Dandotiya, A. Sharma, S. Mishra, and S. K. Gupta, “Cyber attack Detection Using Machine Learning Techniques,” 2023. doi: 10.1109/ICTBIG59752.2023.10456080.
[14] D. Lin, J. Wu, T. Huang, K. Lin, and Z. Zheng, “Who is Who on Ethereum? Account Labeling Using Heterophilic Graph Convolutional Network,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 54, no. 3, pp. 1541–1553, 2024, doi: 10.1109/TSMC.2023.3329520.
[15] J. R. Saura, S. Ribeiro-Navarrete, D. Palacios-Marqués, and A. Mardani, “Impact of extreme weather in production economics: Extracting evidence from user-generated content,” Int. J. Prod. Econ., vol. 260, 2023, doi: 10.1016/j.ijpe.2023.108861.
[16] R. V. Manjunath and N. Yashaswini Gowda, “Automated approach for skin lesion segmentation utilizing a hybrid deep learning algorithm,” Multimed. Tools Appl., vol. 83, no. 15, pp. 46017–46035, 2024, doi: 10.1007/s11042-023-16934-1.
[17] T. Li, W. Bai, Q. Liu, Y. Long, and C. L. P. Chen, “Distributed Fault-Tolerant Containment Control Protocols for the Discrete-Time Multiagent Systems via Reinforcement Learning Method,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 8, pp. 3979–3991, 2023, doi: 10.1109/TNNLS.2021.3121403.
[18] A. Paya, S. Arroni, V. García-Díaz, and A. Gómez, “Apollon: A robust defense system against Adversarial Machine Learning attacks in Intrusion Detection Systems,” Comput. Secur., vol. 136, 2024, doi: 10.1016/j.cose.2023.103546.
[19] O. Elnakib, E. Shaaban, M. Mahmoud, and K. Emara, “EIDM: deep learning model for IoT intrusion detection systems,” J. Supercomput., vol. 79, no. 12, pp. 13241–13261, 2023, doi: 10.1007/s11227-023-05197-0.
[20] P. Joshi, M. Hasanuzzaman, C. Thapa, H. Afli, and T. Scully, “Enabling All In-Edge Deep Learning: A Literature Review,” IEEE Access, vol. 11, pp. 3431–3460, 2023, doi: 10.1109/ACCESS.2023.3234761.
[21] A. Algarni, T. Acarer, and Z. Ahmad, “An Edge Computing-Based Preventive Framework With Machine Learning- Integration for Anomaly Detection and Risk Management in Maritime Wireless Communications,” IEEE Access, vol. 12, pp. 53646–53663, 2024, doi: 10.1109/ACCESS.2024.3387529.
[22] M. Ehteshamuddin, K. Sheelvardhan, A. Kumar, S. Guglani, S. Roy, and A. Dasgupta, “Machine Learning-Assisted Multiobjective Optimization of Advanced Node Gate-All-Around Transistor for Logic and RF Applications,” IEEE Trans. Electron Devices, vol. 71, no. 2, pp. 976–982, 2024, doi: 10.1109/TED.2023.3345288.
[23] J. Chen and J. Zhang, “Crude oil price shocks, volatility spillovers, and global systemic financial risk transmission mechanisms: Evidence from the stock and foreign exchange markets,” Resour. Policy, vol. 85, 2023, doi: 10.1016/j.resourpol.2023.103875.
[24] Y. Nie, P. Sommella, M. Carratù, M. O’Nils, and J. Lundgren, “A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss,” Diagnostics, vol. 13, no. 1, 2023, doi: 10.3390/diagnostics13010072.
[25] M. H. Javid, W. Jadoon, H. Ali, and M. D. Ali, “Design and Analysis of an Improved Deep Ensemble Learning Model for Melanoma Skin Cancer Classification,” 2023. doi: 10.1109/ICACS55311.2023.10089716.
[26] C. Chen, C. Wang, B. Liu, C. He, L. Cong, and S. Wan, “Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 13023–13034, 2023, doi: 10.1109/TITS.2022.3232153.
[27] Z. Liu et al., “PPRU: A Privacy-Preserving Reputation Updating Scheme for Cloud-Assisted Vehicular Networks,” IEEE Trans. Veh. Technol., vol. 74, no. 2, pp. 1877–1892, 2025, doi: 10.1109/TVT.2023.3340723.
[28] N. Tong, Y. Xu, J. Zhang, S. Gou, and M. Li, “Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network,” Phys. Medica, vol. 110, 2023, doi: 10.1016/j.ejmp.2023.102595.
[29] I. Tomar, I. Sreedevi, and N. Pandey, “PLC and SCADA based Real Time Monitoring and Train Control System for the Metro Railways Infrastructure,” Wirel. Pers. Commun., vol. 129, no. 1, pp. 521–548, 2023, doi: 10.1007/s11277-022-10109-1.
[30] L. Adreani, P. Bellini, M. Fanfani, P. Nesi, and G. Pantaleo, “Smart City Digital Twin Framework for Real-Time Multi-Data Integration and Wide Public Distribution,” IEEE Access, vol. 12, pp. 76277–76303, 2024, doi: 10.1109/ACCESS.2024.3406795.
[31] Y. Sugimura, H. Wakashima, Z. Liang, and R. Shibasaki, “Logistics strategy simulation of second-ranked ports on the basis of Japan’s port reforms: a case study of Hakata Port,” Marit. Policy Manag., vol. 50, no. 6, pp. 707–723, 2023, doi: 10.1080/03088839.2022.2057610.
[32] Z. Azam, M. M. Islam, and M. N. Huda, “Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree,” IEEE Access, vol. 11, pp. 80348–80391, 2023, doi: 10.1109/ACCESS.2023.3296444.
[33] E. Konstantopoulou, N. Sklavos, and I. Ognjanovic, “Securing Public Safety Mission-Critical 5G Communications of Smart Cities,” 2024. doi: 10.1007/978-3-031-34601-9_4.
[34] C. Zhao, C. Wang, G. Hu, H. Chen, C. Liu, and J. Tang, “ISTVT: Interpretable Spatial-Temporal Video Transformer for Deepfake Detection,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 1335–1348, 2023, doi: 10.1109/TIFS.2023.3239223.
[35] J. Kaur, U. Garg, and G. Bathla, “Detection of cross-site scripting (XSS) attacks using machine learning techniques: a review,” Artif. Intell. Rev., vol. 56, no. 11, pp. 12725–12769, 2023, doi: 10.1007/s10462-023-10433-3.
[36] P. Yan, W. Sun, X. Li, M. Li, Y. Jiang, and H. Luo, “PKDN: Prior Knowledge Distillation Network for bronchoscopy diagnosis,” Comput. Biol. Med., vol. 166, 2023, doi: 10.1016/j.compbiomed.2023.107486.
[37] M. Tian et al., “Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks,” Med. Phys., vol. 50, no. 10, pp. 6354–6365, 2023, doi: 10.1002/mp.16468.
[38] A. Ali, B. A. S. Al-rimy, F. S. Alsubaei, A. A. Almazroi, and A. A. Almazroi, “HealthLock: Blockchain-Based Privacy Preservation Using Homomorphic Encryption in Internet of Things Healthcare Applications,” Sensors, vol. 23, no. 15, 2023, doi: 10.3390/s23156762.
[39] N. Zad et al., “Development of machine learning algorithms to estimate maximum residue limits for veterinary medicines,” Food Chem. Toxicol., vol. 179, 2023, doi: 10.1016/j.fct.2023.113920.
[40] H. Wu, H. Li, X. Luo, and S. Jiang, “Blockchain-Based Onsite Activity Management for Smart Construction Process Quality Traceability,” IEEE Internet Things J., vol. 10, no. 24, pp. 21554–21565, 2023, doi: 10.1109/JIOT.2023.3300076.
[41] A. Zulfikri, F. P. E. Putra, M. A. Huda, H. Hasbullah, M. Mahendra, and M. Surur, “Analisis Keamanan Jaringan Dari Serangan Malware Menggunakan Filtering Firewall Dengan Port Blocking,” 2023. doi: 10.47709/digitech.v3i2.3379.
[42] F. A. Proudlock et al., “Extended optical treatment versus early patching with an intensive patching regimen in children with amblyopia in Europe (EuPatch): a multicentre, randomised controlled trial,” Lancet, vol. 403, no. 10438, pp. 1766–1778, 2024, doi: 10.1016/S0140-6736(23)02893-3.
[43] J. P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, “Ethical hacking for IoT: Security issues, challenges, solutions and recommendations,” Internet Things Cyber-Physical Syst., vol. 3, pp. 280–308, 2023, doi: 10.1016/j.iotcps.2023.04.002.
[44] K. Kuru, “MetaOmniCity: Toward Immersive Urban Metaverse Cyberspaces Using Smart City Digital Twins,” IEEE Access, vol. 11, pp. 43844–43868, 2023, doi: 10.1109/ACCESS.2023.3272890.
[45] X. Guo, D. Wang, J. Li, and H. Zhang, “Global research status and trends in orthopaedic surgical robotics: a bibliometric and visualisation analysis study,” J. Robot. Surg., vol. 17, no. 4, pp. 1743–1756, 2023, doi: 10.1007/s11701-023-01579-x.
[46] M. A. Habibi et al., “Toward an Open, Intelligent, and End-to-End Architectural Framework for Network Slicing in 6G Communication Systems,” IEEE Open J. Commun. Soc., vol. 4, pp. 1615–1658, 2023, doi: 10.1109/OJCOMS.2023.3294445.
[47] I. Zografopoulos, N. D. Hatziargyriou, and C. Konstantinou, “Distributed Energy Resources Cybersecurity Outlook: Vulnerabilities, Attacks, Impacts, and Mitigations,” IEEE Syst. J., vol. 17, no. 4, pp. 6695–6709, 2023, doi: 10.1109/JSYST.2023.3305757.
[48] H. Badihi, S. Jadidi, Z. Yu, Y. Zhang, and N. Lu, “Smart Cyber-Attack Diagnosis and Mitigation in a Wind Farm Network Operator,” IEEE Trans. Ind. Informatics, vol. 19, no. 9, pp. 9468–9478, 2023, doi: 10.1109/TII.2022.3228686.
[49] M. Vijayan and V. S, “A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet,” Diagnostics, vol. 13, no. 4, 2023, doi: 10.3390/diagnostics13040774.
[50] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms,” Sensors, vol. 24, no. 2, 2024, doi: 10.3390/s24020713.
[51] M. A. Putratama, R. Rigo-Mariani, A. D. Mustika, V. Debusschere, A. Pachurka, and Y. Besanger, “A Three-Stage Strategy With Settlement for an Energy Community Management Under Grid Constraints,” IEEE Trans. Smart Grid, vol. 14, no. 2, pp. 1505–1514, 2023, doi: 10.1109/TSG.2022.3167862.
[52] L. Zhu, C. Shen, X. Wang, H. Liang, H. Wang, and T. Tang, “A Learning Based Intelligent Train Regulation Method With Dynamic Prediction for the Metro Passenger Flow,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 4, pp. 3935–3948, 2023, doi: 10.1109/TITS.2022.3231838.
[53] J. Cai, W. Liang, X. Li, K. Li, Z. Gui, and M. K. Khan, “GTxChain: A Secure IoT Smart Blockchain Architecture Based on Graph Neural Network,” IEEE Internet Things J., vol. 10, no. 24, pp. 21502–21514, 2023, doi: 10.1109/JIOT.2023.3296469.
[54] E. Khodayari Moez et al., “Circulating proteome for pulmonary nodule malignancy,” JNCI J. Natl. Cancer Inst., vol. 115, no. 9, pp. 1060–1070, 2023, doi: 10.1093/jnci/djad122.
[55] O. D. Okey, D. C. Melgarejo, M. Saadi, R. L. Rosa, J. H. Kleinschmidt, and D. Z. Rodriguez, “Transfer Learning Approach to IDS on Cloud IoT Devices Using Optimized CNN,” IEEE Access, vol. 11, pp. 1023–1038, 2023, doi: 10.1109/ACCESS.2022.3233775.
[56] M. I. B. Ahmed et al., “Personal Protective Equipment Detection: A Deep-Learning-Based Sustainable Approach,” Sustain., vol. 15, no. 18, 2023, doi: 10.3390/su151813990.
[57] F. Jiao et al., “What can we learn when fitting a simple telegraph model to a complex gene expression model?,” PLoS Comput. Biol., vol. 20, no. 5, 2024, doi: 10.1371/journal.pcbi.1012118.
[58] W. J. Neumann, R. Gilron, S. Little, and G. Tinkhauser, “Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation,” 2023. doi: 10.1002/mds.29415.
[59] G. López-Millán, R. Marín-López, F. Pereñíguez-García, O. Canovas, and J. A. Parra Espín, “Analysis and practical validation of a standard SDN-based framework for IPsec management,” Comput. Stand. Interfaces, vol. 83, 2023, doi: 10.1016/j.csi.2022.103665.
[60] A. Oseni et al., “An Explainable Deep Learning Framework for Resilient Intrusion Detection in IoT-Enabled Transportation Networks,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 1000–1014, 2023, doi: 10.1109/TITS.2022.3188671.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika Dan Tekonologi Komputer (JITEK)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.