Evaluasi Kualitas Layanan (QoS) pada Jaringan Wi-Fi 6 Dibandingkan dengan Wi-Fi 5

Authors

  • Fauzan Prasetyo Eka Putra Universitas Madura
  • Ekawati Ekawati Universitas Madura
  • Akhmad Vidyan Universitas Madura
  • Moh. Ali Universitas Madura

DOI:

https://doi.org/10.55606/jitek.v5i1.6010

Keywords:

Wi-Fi 6, Quality of Service (QoS), IEEE 802.11ax vs 802.11ac, wireless network performance

Abstract

The increasing demand for reliable and efficient wireless connectivity, especially for real-time applications such as video conferencing, online gaming, and VoIP services, is driving the adoption of more advanced networking technologies. This study aims to evaluate and compare the quality of service (QoS) between two generations of Wi-Fi standards, namely Wi-Fi 6 (IEEE 802.11ax) and Wi-Fi 5 (IEEE 802.11ac), based on key performance parameters such as throughput, latency, jitter, and packet loss. Tests were conducted in controlled laboratory scenarios and dense user environments to simulate real-world conditions. The measurement results show that Wi-Fi 6 is able to provide significant improvements in terms of spectrum efficiency, traffic management, and resilience to interference, thanks to superior features such as OFDMA, MU-MIMO, BSS Coloring, and Target Wake Time (TWT). Compared to Wi-Fi 5, Wi-Fi 6 shows more stable and responsive performance, making it a more suitable solution for modern network needs with high traffic loads and low latency demands. These findings reinforce the potential of Wi-Fi 6 as a superior standard in supporting QoS in various intensive usage scenarios.

References

[1] X. Mu and M. F. Antwi-Afari, “The applications of Internet of Things (IoT) in industrial management: a science mapping review,” Int. J. Prod. Res., vol. 62, no. 5, pp. 1928–1952, 2024, doi: 10.1080/00207543.2023.2290229.

[2] H. Kopetz and W. Steiner, “Internet of things,” Real-time Syst. Des. Princ. Distrib. …, 2022, doi: 10.1007/978-3-031-11992-7_13.

[3] S. Manzoor, N. I. Ratyal, and H. G. Mohamed, “Achieving QoS in Smart Cities Using Software Defined Wi-Fi Networks,” IEEE Access, vol. 11, pp. 98256–98268, 2023, doi: 10.1109/ACCESS.2023.3313249.

[4] M. I. Alhari and M. Lubis, “Quality of Service (QoS) Wifi Network Study Case: Telkom University Dormitory Hall,” Proc. 2023 IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun. Technol. IAICT 2023, pp. 345–349, 2023, doi: 10.1109/IAICT59002.2023.10205625.

[5] B. Liu, “Wireless Performance Test and Evaluation for New Generation WiFi Router,” 2024. doi: 10.1109/PIERS62282.2024.10618773.

[6] T. H. Wang, “Distributed Multi-Agent Deep Q-Learning for Fast Roaming in IEEE 802.11ax Wi-Fi Systems,” 2024. doi: 10.1109/CCNC51664.2024.10454741.

[7] F. P. E. Putra, D. A. M. Putra, A. Firdaus, and A. Hamzah, “Analisis Kecepatan Dan Kinerja Jaringan 5G (generasi ke 5) Pada Wilayah Perkotaan,” INFORMATICS Educ. Prof. J. Informatics, vol. 8, no. 1, p. 47, 2023, doi: 10.51211/itbi.v8i1.2439.

[8] H. Li, S. Xiao, L. He, Q. Cai, and G. Liu, “A Dual-Band 8-Antenna Array Design for 5G/WiFi 5 Metal-Frame Smartphone Applications,” 2024, mdpi.com. doi: 10.3390/mi15050584.

[9] A. Chinmay and H. K. Pati, “Impact of Retransmission on VoWiFi Cell Capacity Estimation using IEEE 802.11ax WiFi Standard,” Proc. 2021 17th Int. Conf. Netw. Serv. Manag. Smart Manag. Futur. Networks Serv. CNSM 2021, pp. 326–329, 2021, doi: 10.23919/CNSM52442.2021.9615570.

[10] I. Forenbacher, S. Husnjak, I. Jovović, and M. Bobić, “Throughput of an ieee 802.11 wireless network in the presence of wireless audio transmission: A laboratory analysis,” 2021, mdpi.com. doi: 10.3390/s21082620.

[11] X. Ju, “A Framework on Complex Matrix Derivatives With Special Structure Constraints for Wireless Systems,” IEEE Trans. Commun., vol. 72, no. 8, pp. 5145–5161, 2024, doi: 10.1109/TCOMM.2024.3379360.

[12] H. Cheng, “Coplanar integration of antipodal vivaldi antenna with metasurface antennas for ground penetrating radar and 5-GHz WIFI applications,” Phys. Scr., vol. 98, no. 5, 2023, doi: 10.1088/1402-4896/acc702.

[13] K. H. Mohammadani, R. A. Butt, K. A. Memon, and ..., “A QoS provisioning architecture of fiber wireless network based on XGPON and IEEE 802.11 ac,” J. Opt. …, 2024, doi: 10.1515/joc-2020-0230.

[14] E. Tokhirov and R. Aliev, “Analysis of the differences between Wi-Fi 6 and Wi-Fi 5,” E3S Web Conf., vol. 402, 2023, doi: 10.1051/e3sconf/202340203020.

[15] J. D. Rosenthal, “Wideband OFDM Backscatter with Limited-Bandwidth Antennas for WiFi-6 and Future High-Data-Rate Backscatter Systems,” 2024. doi: 10.23919/SpliTech61897.2024.10612616.

[16] H. Vijayaraghavan, “ComputiFi: Latency-Optimized Task Offloading in Multipath Multihop LiFi-WiFi Networks,” IEEE Open J. Commun. Soc., vol. 5, pp. 4444–4461, 2024, doi: 10.1109/OJCOMS.2024.3426278.

[17] A. Chinmay, “Enhancement of VoWiFi cell capacity using A-MPDU frame aggregation technique in WiFi 6 considering VBR traffic,” Int. J. Commun. Syst., vol. 37, no. 10, 2024, doi: 10.1002/dac.5782.

[18] J. Peng, “IEEE 802.11 n and IEEE 802.11 ax Networks under Various Propagation Models,” Procedia Comput. Sci., 2025, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050925007458

[19] M. Natkaniec, “An Analysis of the Mixed IEEE 802.11ax Wireless Networks in the 5 GHz Band,” Sensors, vol. 23, no. 10, 2023, doi: 10.3390/s23104964.

[20] T. Nishitha, S. Sai Ajeeth, and M. Vineetha, “Evaluation of Wi-Fi 6 in Residential Scenario Using Various RAA,” Cogn. Sci. Technol., vol. 2025, pp. 219–227, 2025, doi: 10.1007/978-981-97-9266-5_22.

[21] S. Yun, “A 2.4/5 GHz Dual-Band Low-Noise and Highly Linear Receiver With a New Power-Efficient Feedforward OPAMP for WiFi-6 Applications,” IEEE Access, vol. 11, pp. 137264–137273, 2023, doi: 10.1109/ACCESS.2023.3339573.

[22] N. Salim, “4X4 MIMO slot antenna spanner shaped low mutual coupling for Wi-Fi 6 and 5G communications,” Alexandria Eng. J., vol. 78, pp. 141–148, 2023, doi: 10.1016/j.aej.2023.07.042.

[23] M. Pulujkar, “Design and Implementation of the SIRC Protocol for Achieving QOS Parameters in Wireless Sensor Networks,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 2, pp. 311–315, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85161688252&origin=inward

[24] A. Salama, M. Bagheri, and E. O. Peter, “Comparative Performance Evaluation of Real-Time Traffic on Wi-Fi Standards: 802.11ax vs. 802.11ac,” 2024 34th Int. Telecommun. Networks Appl. Conf. ITNAC 2024, 2024, doi: 10.1109/ITNAC62915.2024.10815245.

[25] D. Cahyadi, I. F. Astuti, and Nazaruddin, “Comparison of throughput and CPU usage between WPA3 and WPA2 security methods on wireless networks 802.11n,” AIP Conf. Proc., vol. 2482, 2023, doi: 10.1063/5.0110514.

[26] M. Kaur, “A Framework for QoS Parameters-Based Scheduling for IoT Applications on Fog Environments,” Wirel. Pers. Commun., vol. 132, no. 4, pp. 2709–2736, 2023, doi: 10.1007/s11277-023-10740-6.

[27] S. Galmés, “A New Collision Resolution Mechanism Based on the Discovery of Colliding Sources,” 2024. doi: 10.1109/WCNC57260.2024.10570835.

[28] Y. Zhu, “203.6Tb/s CPRI-Equivalent Rate 1024-QAM DA-RoF Fronthaul with Comb-based WDM and SDM Superchannel,” 2023. doi: 10.23919/OFC49934.2023.10116999.

[29] S. Safiuddin and F. P. E. Putra, “Strategi Efisiensi Wireless Sensor Network (WSN),” INFORMATICS Educ. …, 2023, [Online]. Available: http://101.255.92.196/index.php/ITBI/article/view/2441

[30] Z. Huang, “4-D Markov Chain Analysis of Multi-Link EDCA in Next-Generation Wi-Fi,” IEEE Wirel. Commun. Lett., vol. 14, no. 1, pp. 228–232, 2025, doi: 10.1109/LWC.2024.3496563.

[31] L. C. Paul, “A dual-band semi-circular patch antenna for WiMAX and WiFi-5/6 applications,” Int. J. Commun. Syst., vol. 36, no. 1, 2023, doi: 10.1002/dac.5357.

[32] K. Montgomery, “Latency-Sensitive Networked Control Using 802.11ax OFDMA Triggering,” 2024. doi: 10.1109/AIM55361.2024.10637136.

[33] O. Ozkaya, “QoS-Aware UL-OFDMA for Time-Sensitive Applications in Wi-Fi 6 Networks,” 2024. doi: 10.1109/WiMob61911.2024.10770409.

[34] K. Ramezanpour, J. Jagannath, and A. Jagannath, “Security and privacy vulnerabilities of 5G/6G and WiFi 6: Survey and research directions from a coexistence perspective,” Comput. Networks, vol. 221, 2023, doi: 10.1016/j.comnet.2022.109515.

[35] Z. Bi, Y. Jin, P. Maropoulos, W. J. Zhang, and L. Wang, “Internet of things (IoT) and big data analytics (BDA) for digital manufacturing (DM),” Int. J. Prod. Res., vol. 61, no. 12, pp. 4004–4021, 2023, doi: 10.1080/00207543.2021.1953181.

[36] A. S. Lakhan, “Multivariate Polynomial Public Key Digital Signature Algorithm: Semi-covariance Analysis and Performance Test over 5G Networks,” 2023. doi: 10.1109/WiMob58348.2023.10187725.

[37] M. Kim, K. Oh, Y. Cho, H. Seo, X. T. Nguyen, and H.-J. Lee, “A Low-Latency FPGA Accelerator for YOLOv3-Tiny With Flexible Layerwise Mapping and Dataflow,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 71, no. 3, pp. 1158–1171, 2024, doi: 10.1109/TCSI.2023.3335949.

[38] R. Ananda, H. Alamsyah, and ..., “Development Of Wifi 6 Based Computer Network At LPK Sulthoon 4M,” J. Media Comput. …, 2025, [Online]. Available: https://jurnal.unived.ac.id/index.php/jmcs/article/view/7709

[39] A. Kar, N. Vashisht, R. Kumar, S. Sharma, G. Indira, and R. Kachhoria, “QoS-Aware High Throughput Scheduling for Wireless Networks,” 2023 3rd Int. Conf. Smart Gener. Comput. Commun. Networking, SMART GENCON 2023, 2023, doi: 10.1109/SMARTGENCON60755.2023.10442379.

[40] J. Xu, “A Fast Deep Unfolding Learning Framework for Robust MU-MIMO Downlink Precoding,” IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 2, pp. 359–372, 2023, doi: 10.1109/TCCN.2023.3235763.

[41] M. Jain, A. Mishra, S. Das, A. Wiese, A. Bhattacharya, and M. Maity, “A Deadline-Aware Scheduler for Smart Factory using WiFi 6,” Proc. Int. Symp. Mob. Ad Hoc Netw. Comput., pp. 221–230, 2024, doi: 10.1145/3641512.3686387.

[42] F. F. Al-Azzawi, “Nonlinear Amplifier Effect on High Bit Rate Modulation Techniques Used in WiFi Generation with MATLAB Simulink,” Math. Model. Eng. Probl., vol. 11, no. 1, pp. 27–33, 2024, doi: 10.18280/mmep.110103.

[43] Y. Wu et al., “Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream,” EURASIP J. Adv. Signal Process., vol. 2023, no. 1, 2023, doi: 10.1186/s13634-023-01018-x.

[44] A. Wulandari, T. Supriyanto, A. Hasna, R. N. N, and A. Hikmaturokhman, “Performance Analysis of 4x4 MIMO and 8x8 MIMO Antena Implementation of Private 5G Networks in Industrial Area,” J. Informatics Telecommun. Eng., vol. 7, no. 2, pp. 555–565, 2024, doi: 10.31289/jite.v7i2.10440.

[45] A. Behara, “Performance Analysis and Energy Efficiency of MU- (OFDMA & MIMO) Based Hybrid MAC Protocol of IEEE 802.11ax WLANs,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 6474–6490, 2023, doi: 10.1109/TVT.2022.3230873.

[46] N. El Anzoul, “Design and fabrication of a novel frequency-reconfigurable patch antenna for WiFi and 5 G applications,” Ann. des Telecommun. Telecommun., 2025, doi: 10.1007/s12243-025-01080-6.

[47] J. Iqbal, “Circularly polarized dual-port MIMO DRA for future Wi-Fi 6E applications,” Int. J. Microw. Wirel. Technol., 2024, doi: 10.1017/S1759078724000576.

[48] C. d. Bak, “Contention alleviation in WiFi networks by using light-weight machine learning model,” Comput. Networks, vol. 222, 2023, doi: 10.1016/j.comnet.2022.109534.

[49] G. A. Alghisi and F. Gringoli, “An Experimental Analysis of the WPA3 Protocol in IoT Devices,” 2024 22nd Mediterr. Commun. Comput. Netw. Conf. MedComNet 2024, 2024, doi: 10.1109/MedComNet62012.2024.10578197.

[50] J. Sheth, V. K. Ramanna, and B. Dezfouli, “Traffic Characterization for Efficient TWT Scheduling in 802.11ax IoT Networks,” IEEE Wirel. Commun. Netw. Conf. WCNC, vol. 2023-March, 2023, doi: 10.1109/WCNC55385.2023.10119047.

Downloads

Published

2025-03-31

How to Cite

Fauzan Prasetyo Eka Putra, Ekawati Ekawati, Akhmad Vidyan, & Moh. Ali. (2025). Evaluasi Kualitas Layanan (QoS) pada Jaringan Wi-Fi 6 Dibandingkan dengan Wi-Fi 5. Jurnal Informatika Dan Tekonologi Komputer (JITEK), 5(1), 102–108. https://doi.org/10.55606/jitek.v5i1.6010

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)