Pompa Otomatis dan Monitoring Kekeruhan Tempat Penampungan Air
(Studi pada TPQ At – Ta’awun)
DOI:
https://doi.org/10.55606/jitek.v5i3.8122Keywords:
IoT, ESP32, ultrasonic sensor, turbidity sensor, water pump automation, Blynk, Telegram notification, real-time monitoringAbstract
This research aims to design and develop an Internet of Things (IoT)-based automatic water pump monitoring and control system. The system utilizes an ESP32 microcontroller connected to an ultrasonic sensor to measure water level and a turbidity sensor to detect water clarity. The pump is automatically activated when the water level drops below a specified threshold and deactivated when the tank is full. Furthermore, when the turbidity value exceeds a certain limit (e.g., >40 NTU), the system sends notifications to the user via the Blynk application. In addition, notifications are also sent through a Telegram bot, allowing users to receive alerts instantly without needing to open the Blynk app. Key data such as water level distance, NTU value, pump status, and water condition are displayed locally on a 16x2 LCD and remotely on the Blynk dashboard.System testing was conducted using samples of clean water, tea, and milk coffee to represent varying levels of turbidity. The results showed that the system effectively detected different turbidity levels and automatically controlled the pump based on the water level. This system offers an efficient real-time solution for monitoring water quality and can be applied in places such as Islamic schools (TPQ), educational institutions, or households.
References
[1] Badan Pusat Statistik indonesia, “Badan Pusat Statistik Kabupaten Batang, Kecamatan Bandar Dalam Angka 2022,” Badan Pus. Stat., no. February, pp. 1–353, 2022, [Online]. Available: https://batangkab.bps.go.id/id/publication/2022/09/26/79eb2ea07c63e85f9134a61f/bandar-subdistrict-in-figures-2022.html
[2] D. Sasmoko, H. Rasminto, and A. Rahmadani, “Rancang Bangun Sistem Monitoring Kekeruhan Air Berbasis IoT pada Tandon Air Warga,” J. Inform. Upgris, vol. 5, no. 1, pp. 25–34, 2019, doi: 10.26877/jiu.v5i1.2993.
[3] I. Gunawan and T. Akbar, “Prototipe Penerapan Internet Of Things (Iot) Pada Monitoring Level Air Tandon Menggunakan Nodemcu Esp8266 Dan Blynk,” Infotek J. Inform. dan Teknol., vol. 3, no. 1, pp. 1–7, 2020, doi: 10.29408/jit.v3i1.1789.
[4] M. Musyrifah, A. Asmawati, and M. F. Mansyur, “RANCANG BANGUN SISTEM MONITORING KEKERUHAN DAN KETINGGIAN AIR BERBASIS IoT PADA IKAN HIAS,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4000.
[5] R. Abdmeziem and D. Tandjaoui, “Internet of Things: Concept, Building blocks, Applications and Challenges,” 2014, [Online]. Available: http://arxiv.org/abs/1401.6877
[6] H. Ferdiansyah and Z. N, “Internet of Things (IoT) Media Pembelajaran Praktikum Era 4.0,” Internet Things Media Pembelajaran Prakt. Era 4.0, pp. 22–27, 2022.
[7] K. Aduda et al., “The Human in the Loop: An Approach to Individualize Smart Process Control,” Procedia Environ. Sci., vol. 22, pp. 302–312, 2014, doi: 10.1016/j.proenv.2014.11.029.
[8] P. M. Baterai and L. Led, “Jurnal Ilmiah Setrum,” vol. 8, no. 2, pp. 260–273, 2020, doi: 10.62870/setrum.v14i1.33205.
[9] H. R. Iskandar, Hermadani, D. I. Saputra, and H. Yuliana, “Eksperimental Uji Kekeruhan Air berbasis Internet of Things menggunakan Sensor DFRobot SEN0189 dan MQTT Cloud Server,” J. Umj, no. Sigdel 2017, pp. 1–9, 2019.
[10] S. Garudeswaran, S. Cho, I. Ohu, and A. K. Panahi, “Teach and Playback Training Device for Minimally Invasive Surgery,” Minim. Invasive Surg., vol. 2018, no. April, 2018, doi: 10.1155/2018/4815761.
[11] A. Rahman Sholeh, H. Rasmita Ngemba, E. Setijadi, and J. Teknik, “Implementasi Internet Of Things Dalam Mengontrol dan Memonitor Ketinggian Air Implementation of the Internet of Things for Controlling and Monitoring Water Level,” vol. 21, no. 4, pp. 896–904, 2022.
[12] A. Q. Burhan and S. Islami, “Implementation of the Internet of Things using Blynk platform for smart home,” vol. 01, no. 02, pp. 114–119, 2024.
[13] D. R. Tisna, T. Maharani, and K. T. Nugroho, “Pemanfaatan Chatbot Telegram Untuk Monitoring Dan Kontrol Kualitas Air Menggunakan Esp32,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1292–1306, 2024, doi: 10.29100/jipi.v9i3.5329.
[14] P. T. Wikantama and R. Puspitasari, “Perancangan Perangkat Pengukur Ketinggian Banjir dengan ESP32 dan Telegram Berbasis IoT,” Elektriese J. Sains dan Teknol. Elektro, vol. 13, no. 02, pp. 107–114, 2023, doi: 10.47709/elektriese.v13i02.3108.
[15] I. M. P. Rahayu, I. N. Piarsa, and A. A. K. A. Cahyawan Wiranatha, “Design and Development of Water Pump Controlling and Monitoring Tools Based on the Internet of Things,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 11, no. 2, p. 92, 2023, doi: 10.24843/jim.2023.v11.i02.p04.
[16] M. Zaky, D. Nuraji, A. Mu’afi, M. Abie, S. Harianto, and M. R. Ferdianto, “Rancang Bangun Sistem Irigasi Pertanian Berbasis IoT Menggunakan Metode SDLC Model Waterfall,” Sist. Informasi, dan Data Sci., vol. 03, no. 01, p. 4474, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika Dan Tekonologi Komputer (JITEK)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





