A Review of The Potential of Neural Stem Cells in Spinal Cord Injury Repair and Neural Tissue Regeneration

Authors

  • Muhammad Hamza Mubarak Universitas Islam Indonesia
  • Evy Sulistyoningrum Universitas Islam Indonesia

DOI:

https://doi.org/10.55606/jikki.v5i1.7238

Keywords:

Neural Stem Cells, Spinal Cord Injuries, Nerve Regeneration

Abstract

Cedera tulang belakang (Spinal Cord Injury/SCI) merupakan kondisi neurologis serius yang menyebabkan gangguan fungsional jangka panjang dan penurunan kualitas hidup secara signifikan. Keterbatasan mekanisme regeneratif dalam sistem saraf pusat (CNS) menjadikan pemulihan SCI sebagai tantangan besar dalam dunia medis. Neural Stem Cells (NSCs) muncul sebagai terapi potensial karena kemampuannya berdiferensiasi menjadi berbagai jenis sel saraf dan berintegrasi dengan jaringan yang rusak. Studi ini bertujuan untuk memetakan lanskap riset terkini terkait penggunaan NSCs dalam regenerasi jaringan saraf akibat SCI melalui metode scoping review. Kajian ini dilakukan berdasarkan pedoman PRISMA-ScR, dengan pencarian literatur dari tahun 2015 hingga 2025 melalui database PubMed dan Google Scholar menggunakan kata kunci terkait “Neural Stem Cells” dan “Spinal Cord Injury”. Sebanyak 145 studi memenuhi kriteria inklusi, terdiri dari 88% studi praklinis dan 12% uji klinis. Mayoritas penelitian menyoroti keberhasilan transplantasi NSCs pada model hewan SCI, dengan 60% di antaranya melaporkan peningkatan signifikan dalam fungsi motorik dan sensorik. NSCs terbukti dapat berdiferensiasi menjadi neuron, oligodendrosit, dan astrosit, serta memperbaiki jaringan yang rusak. Meskipun hasil praklinis menunjukkan harapan tinggi, penerapan klinis masih menghadapi hambatan seperti rendahnya tingkat kelangsungan hidup sel, metode transplantasi yang belum optimal, dan isu etik. Oleh karena itu, penelitian lebih lanjut diperlukan untuk mengatasi tantangan tersebut, termasuk perluasan uji klinis dengan populasi lebih besar guna mengevaluasi efektivitas dan keamanan terapi NSC dalam pengobatan SCI.

References

1. van Den Hauwe, L., Sundgren, P. C., & Flanders, A. E. (2020). Spinal trauma and spinal cord injury (SCI). In A. F. Carvalho & P. M. A. Tavares (Eds.), Diseases of the brain, head and neck, spine 2020–2023: Diagnostic imaging (pp. 231–240). Springer

2. Alito, A., Filardi, V., Fama, F., Bruschetta, D., Ruggeri, C., Basile, G., ... Tisano, A. (2021). Traumatic and non-traumatic spinal cord injury: Demographic characteristics, neurological and functional outcomes. A 7-year single centre experience. Journal of Orthopaedics, 28, 62–66.

3. Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M., Druschel, C., Curt, A., & Fehlings, M. G. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3(1), 1–21.

4. Homem, C. C., Repic, M., & Knoblich, J. A. (2015). Proliferation control in neural stem and progenitor cells. Nature Reviews Neuroscience, 16(11), 647–659.

5. Shoemaker, L. D., & Kornblum, H. I. (2016). Neural stem cells (NSCs) and proteomics. Molecular & Cellular Proteomics, 15(2), 344–354.

6. Nagappan, P. G., Chen, H., & Wang, D. Y. (2020). Neuroregeneration and plasticity: A review of the physiological mechanisms for achieving functional recovery postinjury. Military Medical Research, 7, 1–16.

7. Gao, Z., Pang, Z., Chen, Y., Lei, G., Zhu, S., Li, G., ... Xu, W. (2022). Restoring after central nervous system injuries: Neural mechanisms and translational applications of motor recovery. Neuroscience Bulletin, 38(12), 1569–1587.

8. Narouiepour, A., Ebrahimzadeh-Bideskan, A., Rajabzadeh, G., Gorji, A., & Negah, S. S. (2022). Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Scientific Reports, 12(1), 3572.

9. Hachem, L. D., & Fehlings, M. G. (2021). Pathophysiology of spinal cord injury. Neurosurgery Clinics, 32(3), 305–313.

10. Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Frontiers in Neurology, 10, 282.

11. Hachem, L. D., & Fehlings, M. G. (2021). Pathophysiology of spinal cord injury. Neurosurgery Clinics, 32(3), 305–313.

12. Venkatesh, K., Ghosh, S. K., Mullick, M., Manivasagam, G., & Sen, D. (2019). Spinal cord injury: Pathophysiology, treatment strategies, associated challenges, and future implications. Cell and Tissue Research, 377, 125–151.

13. Shultz, R. B., & Zhong, Y. (2017). Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regeneration Research, 12(5), 702–713.

14. Hu, X., Xu, W., Ren, Y., Wang, Z., He, X., Huang, R., ... Cheng, L. (2023). Spinal cord injury: Molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 8(1), 245.

15. Sweis, R., & Biller, J. (2017). Systemic complications of spinal cord injury. Current Neurology and Neuroscience Reports, 17, 1–8.

16. Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M., Druschel, C., Curt, A., & Fehlings, M. G. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3(1), 1–21.

17. Kaminska, A., Radoszkiewicz, K., Rybkowska, P., Wedzinska, A., & Sarnowska, A. (2022). Interaction of neural stem cells (NSCs) and mesenchymal stem cells (MSCs) as a promising approach in brain study and nerve regeneration. Cells, 11(9), 1464.

18. McCann, C. J., & Thapar, N. (2018). Enteric neural stem cell therapies for enteric neuropathies. Neurogastroenterology & Motility, 30(10), e13369.

19. Chaker, Z., Codega, P., & Doetsch, F. (2016). A mosaic world: Puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdisciplinary Reviews: Developmental Biology, 5(6), 640–658.

20. Cerneckis, J., Cai, H., & Shi, Y. (2024). Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduction and Targeted Therapy, 9(1), 112.

21. Jin, X. (2016). The role of neurogenesis during development and in the adult brain. European Journal of Neuroscience, 44(6), 2291–2299.

22. Bagheri-Mohammadi, S. (2022). Adult neurogenesis and the molecular signalling pathways in brain: The role of stem cells in adult hippocampal neurogenesis. International Journal of Neuroscience, 132(12), 1165–1177.

23. Kumamaru, H., Kadoya, K., Adler, A. F., Takashima, Y., Graham, L., Coppola, G., & Tuszynski, M. H. (2018). Generation and post-injury integration of human spinal cord neural stem cells. Nature Methods, 15(9), 723–731.

24. Liu, S., & Chen, Z. (2019). Employing endogenous NSCs to promote recovery of spinal cord injury. Stem Cells International, 2019(1), 1958631.

25. Nishimura, S., Yasuda, A., Iwai, H., Ono, M., Yato, N., Nakamura, M., ... Okano, H. (2013). Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Molecular Brain, 6(1), 3.

26. Nori, S., Okada, Y., Yasuda, A., Tsuji, O., Takahashi, Y., Kobayashi, Y., Fujiyoshi, K., Koike, M., Uchiyama, Y., Ikeda, E., Toyama, Y., Yamanaka, S., Nakamura, M., & Okano, H. (2011). Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 108(40), 16825–16830.

27. Nutt, S. E., Chang, E.-A., Suhr, S. T., Schlosser, L. O., Mondello, S. E., Moritz, C. T., Cibelli, J. B., & Horner, P. J. (2013). Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Experimental Neurology, 248, 491–503.

28. Ormond, D. R., Shannon, C., Oppenheim, J., Zeman, R., Das, K., & others. (2014). Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLOS ONE, 9(2), e88916.

29. Piltti, K. M., Salazar, D. L., Uchida, N., Cummings, B. J., & Anderson, A. J. (2013). Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy. Stem Cells Translational Medicine, 2(3), 204–216.

30. Piltti, K. M., Salazar, D. L., Uchida, N., Cummings, B. J., & Anderson, A. J. (2013). Safety of human neural stem cell transplantation in chronic spinal cord injury. Stem Cells Translational Medicine, 2(12), 961–974.

31. Pomeshchik, Y., Puttonen, K. A., Kidin, I., Ruponen, M., Lehtonen, Š., Malm, T., ... Hovatta, I. (2015). Transplanted human induced pluripotent stem cell-derived neural progenitor cells do not promote functional recovery of pharmacologically immunosuppressed mice with contusion spinal cord injury. Cell Transplantation, 24(9), 1799–1812.

32. Romanyuk, N., Amemori, T., Turnovcova, K., Prochazka, P., Onteniente, B., Sykova, E., & Jendelova, P. (2015). Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transplantation, 24(9), 1781–1797.

Downloads

Published

2025-07-09

How to Cite

Muhammad Hamza Mubarak, & Evy Sulistyoningrum. (2025). A Review of The Potential of Neural Stem Cells in Spinal Cord Injury Repair and Neural Tissue Regeneration. Jurnal Ilmu Kedokteran Dan Kesehatan Indonesia, 5(1), 322–334. https://doi.org/10.55606/jikki.v5i1.7238

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.