Penerapan Metode Peramalan Dalam Pengendalian Persediaan Pipa UPVC di PT XYZ

Authors

  • Zabrina Salsabila Salma Universitas Pendidikan Indonesia
  • Ma’ruf Ma’ruf Universitas Pendidikan Indonesia
  • Melia Handayani Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.55606/optimal.v6i1.9105

Keywords:

Forecasting, Inventory Control, SARIMA, Time Series, UPVC Pipe

Abstract

This study aims to enhance the efficiency of inventory control for uPVC AW 3/4inch pipe products at PT XYZ by applying time series forecasting methods using historical sales data. Three forecasting approaches were tested, Double Exponential Smoothing, Holt Winters Multiplicative, and Seasonal Autoregressive Integrated Moving Average (SARIMA). The accuracy of each model was evaluated using Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and Mean Squared Error (MSE) to determine the most reliable forecasting result. The analysis showed that SARIMA model produced the smallest error value, indicating the best level of accuracy. The forecasting output from this model was then used as a basis for calculating safety stock, reorder point, and maximum stock levels to improve inventory control decisions. The finding indicate that databased forecasting helps PT XYZ align production quantities with actual market demand, reducing overstock conditions and optimizing warehouse capacity utilization. This research highlights the importance of applying quantitative forecasting methods to strengthen data driven decision making in inventory management and provides practical insights for manufacturing companies seeking to improve operational efficiency.

References

Armadani, E., Jeffry, D., As’adi, M., & Widiatama, Y. (2025). Improving inventory control in the electrical sector using forecasting models: A comparative study of ARIMA, exponential smoothing, Croston, and SBA. Jurnal Serambi Engineering. https://jse.serambimekkah.id/index.php/jse/article/view/877

Astari, F. S., Yusnita, R. T., & Arisman, A. (2023). Analisis pengendalian persediaan dengan menggunakan metode EOQ (Studi kasus pada bahan baku beras Warung Sorabi Teh Eneng). Jurnal Dialektika, 21(1), 37–53.

Firmansyah, F. (2024). Forecasting using the time series methods for production/inventory planning: Case study (2022–2023 data). Jurnal Teknologi & Aplikasi Industri. https://jtai.politala.ac.id/index.php/JTAI/article/download/199/139

Hartono, H., & Andaresta, I. (2021). Pengaruh pengelolaan persediaan bahan baku terhadap efisiensi biaya persediaan di PT Harmoni Makmur Sejahtera. Jurnal Logistik Indonesia, 5(1), 45–54.

Iedryco, M. A., & Bakhtiar, A. (2025). Usulan perencanaan peramalan & safety stock persediaan material pipa baja dengan 4 metode time series pada PT Bakrie Pipe Industries. Industrial Engineering Online Journal, 14(4). https://ejournal3.undip.ac.id/index.php/ieoj/article/view/53816

Kayla, D. G. E., & Susanto, N. (2025). Kebijakan maksimal dan minimal stock pada material fast moving dengan pendekatan Min-Max Stock. Industrial Engineering Online Journal, 14(4).

Ningrum, D. T. K., & Purnawan. (2022). Evaluasi pengendalian persediaan bahan baku UPVC dengan metode EOQ, POQ, dan Min-Max pada PT XYZ. Industrial Engineering Online Journal, 11(3), 1–9.

Nuraeni, N., & Santoso, B. (2024). Peranan manajemen persediaan bahan baku terhadap penjadwalan produksi PT XYZ. Jurnal Bisnis dan Manajemen (JURBISMAN), 2(2), 379–394.

Pradipta, M. R. (2024). SARIMA with sliding window implementation for forecasting seasonal demand data. JANAPATI, 13(1). https://doi.org/10.23887/janapati.v13i1.59971

Purnamasari, D. I., Permadi, V. A., Saepudin, A., & Agusdin, R. P. (2023). Demand forecasting for improved inventory management in small and medium-sized businesses. JANAPATI, 12(1), 56–66.

Rizaldy, F. M. (2024). Comparative analysis of demand forecasting methods to select the best model for inventory planning. International Journal of Computational Science & Research.

Setiyawan, A. P. (2024). Forecast sales volume of aviation fuel in Jakarta using ARIMA: Implications for inventory management. International Journal of Operations & Management Studies.

Shi, M., Rostami-Tabar, B., & Gartner, D. (2025). Looking for the crystal ball in unscheduled care: A systematic literature review of the forecasting process. Health Care Management Science, 1–17.

Tauhid, U., & Saddam, M. (2021). Analisis akuntansi persediaan barang dagang berdasarkan PSAK No. 14 pada PT Enseval Putera Megatrading. Jurnal Neraca Peradaban, 1(2), 118–127.

Downloads

Published

2026-01-02

How to Cite

Zabrina Salsabila Salma, Ma’ruf Ma’ruf, & Melia Handayani. (2026). Penerapan Metode Peramalan Dalam Pengendalian Persediaan Pipa UPVC di PT XYZ. OPTIMAL Jurnal Ekonomi Dan Manajemen, 6(1), 124–131. https://doi.org/10.55606/optimal.v6i1.9105