Systematic Literature Review: Peran Machine Learning dalam Manajemen Sumber Daya Manusia

Authors

  • Agus Purbo Widodo Universitas Teknologi Surabaya
  • Ady Setiawan Universitas Teknologi Surabaya

DOI:

https://doi.org/10.55606/optimal.v5i4.8089

Keywords:

Artificial Intelligence, Human Resource Development, Human Resource Management, Machine Learning, Systematic Literature Review

Abstract

The Industrial Revolution 4.0 has driven the integration of technology across various sectors, including the application of machine learning (ML) in Human Resource Management (HRM). This technology offers significant potential for improving the efficiency and effectiveness of HR management. This study, conducted using a systematic literature review (SLR), aims to examine the potential, driving and inhibiting factors, and impact of machine learning implementation in HRM. The results show that the application of ML in HRM offers significant benefits, including accelerating and improving the accuracy of the recruitment process, predicting employee turnover rates, providing appropriate training recommendations for employees, and evaluating and personalizing HR performance. Machine learning also plays a role in supporting more informed strategic decision-making. Factors driving ML implementation include the need for accurate decision-making, processing large amounts of data, and higher operational efficiency. However, several challenges hinder its implementation, such as data privacy and security concerns, potential bias in algorithms, high implementation costs, and corporate cultural resistance to change. Despite these challenges, the positive impact of machine learning implementation is significant, particularly in transforming the role of HRD to become more strategic, increasing efficiency and accuracy, and accelerating the completion of administrative work. However, the application of this technology also carries risks, such as data privacy breaches, discrimination due to algorithmic bias, and resistance within corporate cultures that hinder the adoption of new technologies. Therefore, while machine learning offers significant potential, its implementation in HR must be undertaken cautiously, with proper risk management to maximize its benefits and minimize potential negative impacts.

References

Aditya, G., Wardi, A., & Fitriani, N. (2025). Personalization versus privacy: Investigating the trade-offs in AI-driven digital marketing strategies. DINAMIKA: Jurnal Manajemen Sosial Ekonomi, 5(1), 213–226. https://doi.org/10.51903/cjwtch17

Affandi, R. M., & Hermanto, D. (2025). Screening CV otomatis dalam natural language processing menggunakan K-nearest neighbor pada aplikasi SKILLQ. Jatekom: Jurnal Aplikasi Teknologi dan Komputasi, 1(1), 13–21.

Akbar, I., Supriadi, F., & Junaedi, D. I. (2025). Pemanfaatan machine learning di bidang kesehatan. JATI: Jurnal Mahasiswa Teknik Informatika, 9(1), 1744–1749. https://doi.org/10.36040/jati.v9i1.12663

Akmaluddin, M., & Dewayanto, T. (2023). Systematic literature review: Implementasi artificial intelligence dan machine learning pada bidang akuntansi manajemen. Diponegoro Journal of Accounting, 12(4), 1–11.

Ali, M. F., Fahrullah, R., & Perkasa, D. H. (2024). Strategi penerapan kecerdasan buatan (AI) dalam mengelola manajemen sumber daya manusia internasional (IHRM). JEMSI: Jurnal Ekonomi Manajemen Sistem Informasi, 6(2), 1121–1129. https://doi.org/10.38035/jemsi.v6i2.3527

Anas, I. (2025). Integrasi artificial intelligence untuk meningkatkan efisiensi manajemen sumber daya manusia di institusi pendidikan. Eduyorasaki: Journal of Islamic Education Management, 1(1), 1–8.

Aryawan, I. P. A., & Komalasari, Y. (2025). Implementasi artificial intelligence dalam proses rekrutmen dan seleksi karyawan: Efektivitas, efisiensi, dan tantangan etis dalam manajemen sumber daya manusia. In Prosiding Seminar Ilmiah Nasional Teknologi, Sains, dan Sosial Humaniora (SINTESA) (pp. 401–408). Bali: Universitas Dhyana Pura Bali.

Fachrurazi, K. R., Jenita, Y., Purnomo, Y. J., Harto, B., & Dwijayanti, A. (2021). Manajemen sumber daya manusia: Teori dan konsep. Batam: Yayasan Cendikia Mulia Mandiri.

Fahsa, P. C. M., Anjani, P. A., Juliyanti, A. S., & Merdiaty, N. (2025). Peran teknologi dalam manajemen SDM: Sebuah studi literatur. SABER: Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi, 3(1), 162–168. https://doi.org/10.59841/saber.v3i1.2196

Firdaus, A. (2024). Implementasi artificial intelligence dalam rekrutmen: Manfaat dan tantangan di industri 4.0. J-MAS: Jurnal Manajemen dan Sains, 9(2), 1615–1621. https://doi.org/10.33087/jmas.v9i2.2083

Flippo, E. B., Masud, M., & Alfonsus. (1984). Manajemen personalia. Jakarta: Erlangga.

Gunawan, A., Rizki, A. S., Anindya, T. F., Amalia, A. P., & Setiani, W. F. (2025). Manajemen sumber daya manusia pada era digitalisasi. PPIMAN: Pusat Publikasi Ilmu Manajemen, 3(1), 262–272. https://doi.org/10.59603/ppiman.v3i1.662

Harratullisan, & Khasanah, S. N. (2024). Perancangan sistem informasi manajemen sumber daya manusia terintegrasi pada PT. Sarmag Konsultan Nusantara. Jurnal Komputer Antartika, 2(4), 126–135. https://doi.org/10.70052/jka.v2i4.540

Hasibuan, M. S. P. (2019). Manajemen sumber daya manusia. Jakarta: Bumi Aksara. https://doi.org/10.31219/osf.io/x3j64

Hutabarat, D. A. P., & Lubis, Z. (2025). Pemanfaatan teknologi dalam manajemen sumber daya manusia: Perspektif manajerial. HEMAT: Journal of Humanities Education Management Accounting and Transportation, 2(1), 929–938. https://doi.org/10.57235/hemat.v2i1.5328

Infitharina, E., Prasetyo, F. H., & Nugroho, D. P. (2023). Kecerdasan buatan dalam manajemen sumber daya manusia: Menilai dampak pada proses perekrutan dan seleksi. JAMHI: Jurnal Akuntansi Manajemen Hukum Informatika, 1(1), 62–69. https://doi.org/10.38102/jamhi.v1i1.8

Jamroni, A. R. B., Hadikristanto, W., & Fatchan, M. (2025). Analisis faktor dan prediksi atrisi untuk optimalisasi retensi karyawan menggunakan machine learning. Journal Bit-Tech, 7(3), 1057–1067. https://doi.org/10.32877/bt.v7i3.2301

Jayanti, W. E., Afifah, N., & Mustaruddin. (2024). Identifikasi dampak perkembangan artificial intelligence (AI) dan analisa peran baru SDM menuju era disrupsi 5.0. INNOVATIVE: Journal of Social Science Research, 4(3), 7458–7472. https://doi.org/10.31004/innovative.v4i3.11293

Jr., R. I. W., Clark, L. A., Clark, W. R., & Raffo, D. M. (2021). Re-examining systematic literature review in management research: Additional benefits and execution protocols. European Management Journal, 39(4), 521–533. https://doi.org/10.1016/j.emj.2020.09.007

Maehendrayuga, A., Setyanto, A., & Kusnawi. (2024). Analisa prediksi turnover karyawan menggunakan machine learning. Journal Bit-Tech, 7(2), 648–659. https://doi.org/10.32877/bt.v7i2.1999

McKinsey & Company. (2021). McKinsey global surveys, 2021: A year in review. Washington, DC.

Meiriska, I., Wati, A. S., & Rahmi, L. (2025). Pemanfaatan algoritma decision tree pada machine learning dalam penentuan klasifikasi kinerja karyawan pada CV. Duta Media. JUPITER: Jurnal Penelitian Ilmu dan Teknologi Komputer, 17(1), 169–177.

Muliarta, I. N. (2024). Artificial intelligence (AI) as a predictive tool to anticipate future HR management needs. In Prosiding Seminar Nasional Ilmu Manajemen, Ekonomi, Keuangan dan Bisnis (pp. 191–204). Medan: PT Formosa Cendekia Global.

Narulita, S., & Adi, P. N. (2024). Feature selection information gain pada klasifikasi pasien penyakit jantung (heart disease). JURMIK: Jurnal Rekam Medis dan Manajemen Informasi Kesehatan, 4(1), 13–19. https://doi.org/10.53416/jurmik.v4i1.240

Narulita, S., Sekarlangit, & Novianingrum, M. P. (2025). Deteksi alergen pada produk pangan menggunakan algoritma support vector machines (SVM). BRIDGE: Jurnal Publikasi Sistem Informasi dan Telekomunikasi, 3(1), 64–76. https://doi.org/10.62951/bridge.v3i1.393

Pahira, S. H., & Rinaldy, R. (2023). The importance of human resource management (HRM) in improving organizational performance. COMSERVA: Jurnal Penelitian dan Pengabdian Masyarakat, 3(2), 810–817. https://doi.org/10.59141/comserva.v3i03.882

Permana, A. A., Wahyuddin, S., Santoso, L. W., Wibowo, G. W. N., Wardhani, A. K., Wahidin, A. J., Yuliastuti, G. E., Elisawati, Wijayanti, R. R., & Abdurrasyid. (2023). Machine learning. Padang: PT Global Eksekutif Teknologi.

Pratama, A. R., Wabula, F., Ilmandry, H., Isabela, M. L., Raharjo, M., & Sianipar, R. (2025). Literature review: The impact of machine learning in modern industries. Nian Tana Sikka: Jurnal Ilmiah Mahasiswa, 3(1), 177–182. https://doi.org/10.59603/niantanasikka.v3i1.680

Rianti, R., & Andarsyah, R. (2024). Prediksi tingkat atrisi karyawan menggunakan machine learning. Jurnal Tekno Insentif, 18(1), 39–52. https://doi.org/10.36787/jti.v18i1.1263

Setiawan, R. A., Ardiansyah, M. D., & Oktobrian, W. H. F. (2025). Implikasi sosial penggunaan machine learning dalam proses perekrutan kerja. JATI: Jurnal Mahasiswa Teknik Informatika, 9(1), 564–570. https://doi.org/10.36040/jati.v9i1.12426

Sikula, A. F. (1975). Personnel administration and human resources management. Michigan: Wiley.

Silaen, N. R., Nurlaeli, A., Asir, M., Arta, I. P. S., Siregar, L. A., Mahriani, E., Umiyati, H., Haerana, Renaldi, R., Ahdiyat, M., Ahmad, D., Sihotang, R. B., Komalasari, I., & Widiyawati. (2022). Manajemen sumber daya manusia: Perspektif, pengembangan, dan perencanaan. Bandung: Widina Bhakti Persada Bandung.

Simamora, H. (2004). Manajemen sumber daya manusia. Yogyakarta: STIE YKPN.

Singh, K., Kurian, G., & Muzumdar, P. (2025). The essentials of machine learning: Theory to applications. United States of America: Schmidt & Bailey LLC.

Xanderina, M., Nafil, A. A., & Jatmiko, F. (2024). Analisis manajemen sumber daya manusia instansi negeri era digitalisasi dengan kecerdasan buatan. JATI: Jurnal Mahasiswa Teknik Informatika, 8(4), 4451–4456. https://doi.org/10.36040/jati.v8i4.9952

Yasir, A. H., & Gunawan, A. (2024). Mengungkap dampaknya: Peran teknologi AI dalam revolusi industri 4.0 bagi sumber daya manusia. Global: Jurnal Lentera BITEP, 2(2), 48–55. https://doi.org/10.59422/global.v2i02.229

Downloads

Published

2025-08-23

How to Cite

Agus Purbo Widodo, & Ady Setiawan. (2025). Systematic Literature Review: Peran Machine Learning dalam Manajemen Sumber Daya Manusia. OPTIMAL Jurnal Ekonomi Dan Manajemen, 5(4), 650–665. https://doi.org/10.55606/optimal.v5i4.8089