AI in Financial Forecasting : Improving Accuracy and Strategy
DOI:
https://doi.org/10.55606/optimal.v5i1.6541Keywords:
AI, financial forecasting, LSTM networks, predictive analytics, strategic decision-makingAbstract
Financial forecasting faces growing challenges due to market volatility and the inadequacy of traditional models like ARIMA and linear regression in handling non-linear, high-frequency financial data. Artificial intelligence (AI), particularly models such as long short-term memory (LSTM) networks and transformer-based systems, has demonstrated superior performance in tasks like predicting S&P 500 index movements and assessing corporate credit risk in real time. These models not only improve accuracy but also enable strategic applications—for instance, integrating live sentiment data from financial news to adjust portfolio allocations within milliseconds. AI systems have also been used by investment firms to simulate recession scenarios and guide capital reserve strategies. However, adoption remains hindered by issues such as the “black box” nature of deep learning, inconsistent data quality, and concerns over algorithmic bias. As AI continues to evolve, its value lies not just in forecasting precision but in supporting adaptive, transparent, and forward-looking financial management
References
Alam, N., Wahid, A. N. M., & Riaz, S. (2023). Cloud-based AI forecasting for SME financial resilience: A strategic approach. Journal of Small Business Management, 61(1), 72–89. https://doi.org/10.1080/00472778.2022.2084582
Alessi, L., Barigozzi, M., & Capasso, M. (2020). Monitoring systemic risk via dynamic connectedness measures. Journal of Financial Stability, 45, 100744. https://doi.org/10.1016/j.jfs.2020.100744
Amaral, J., Lopes, A. M., & Sousa, J. (2021). Integrated AI-driven financial decision-making for enterprise performance. Journal of Enterprise Information Management, 34(5), 1570–1587. https://doi.org/10.1108/JEIM-10-2020-0406
Arora, S., & Taylor, D. (2023). AI-powered decision support systems in corporate financial planning. Journal of Financial Analytics, 14(2), 101–117. https://doi.org/10.1016/j.finana.2022.10.006
Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046–7056. https://doi.org/10.1016/j.eswa.2015.05.013
Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE, 12(7), e0180944. https://doi.org/10.1371/journal.pone.0180944
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
Bhat, W. A., & Zahedi, F. (2022). Leveraging alternative data for financial forecasting: A deep learning approach. Decision Support Systems, 155, 113697. https://doi.org/10.1016/j.dss.2021.113697
Borovkova, S., & Tsiamas, I. (2019). An ensemble of LSTM neural networks for high-frequency stock market classification. Journal of Forecasting, 38(6), 600–609. https://doi.org/10.1002/for.2587
Bruno, G., Esposito, E., & Mastroianni, M. (2023). AI-enhanced financial planning systems: A comparative study in European firms. European Management Journal, 41(1), 72–84. https://doi.org/10.1016/j.emj.2022.08.006
Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the ‘good society’: The US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505–528. https://doi.org/10.1007/s11948-017-9901-7
Chen, X., Wang, J., & Liu, Y. (2020). Forecasting stock prices with deep learning models: A comparative study. Applied Soft Computing, 95, 106119. https://doi.org/10.1016/j.asoc.2020.106119
De Oliveira, F. A., Nobre, H. L., & Zanin, M. (2021). Strategic planning with predictive analytics: An AI-driven approach to enterprise finance. Technological Forecasting and Social Change, 173, 121057. https://doi.org/10.1016/j.techfore.2021.121057
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint, arXiv:1702.08608. https://doi.org/10.48550/arXiv.1702.08608
Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054
Ghosal, T., Ghosh, S., & Mitra, P. (2022). Multimodal sentiment fusion for real-time financial trend forecasting. IEEE Transactions on Affective Computing, 13(2), 560–573. https://doi.org/10.1109/TAFFC.2020.2987892
Ghosh, R., Aggarwal, S., & Nayak, R. (2023). AI-powered forecasting for strategic corporate finance: A framework for predictive and prescriptive analytics. Technovation, 120, 102603. https://doi.org/10.1016/j.technovation.2022.102603
Gupta, R., & Sen, A. (2022). Regulatory implications of AI adoption in financial services. Journal of Financial Regulation and Compliance, 30(3), 345–360. https://doi.org/10.1108/JFRC-03-2021-0030
Holzinger, A., Malle, B., Kieseberg, P., & Weippl, E. (2021). Toward multi-modal explainable AI in finance: Ethical and practical dimensions. Scientific Reports, 11, 21420. https://doi.org/10.1038/s41598-021-99960-2
Huang, J. Z., Zhou, H., & Fang, Y. (2020). Forecasting stock market movements with deep learning: A review. Journal of Risk and Financial Management, 13(9), 214. https://doi.org/10.3390/jrfm13090214
Kakushadze, Z., & Yu, W. (2020). Financial modeling with machine learning: A survey. Big Data and Cognitive Computing, 4(2), 12. https://doi.org/10.3390/bdcc4020012
Kara, E., Aydın, M., & Altın, A. (2021). Financial forecasting with ensemble models: A comparative study. Financial Innovation, 7(1), 1–21. https://doi.org/10.1186/s40854-021-00273-2
Khandani, A. E., Kim, A. J., & Lo, A. W. (2021). Consumer credit-risk models via machine learning. Journal of Financial Data Science, 3(1), 10–25. https://doi.org/10.3905/jfds.2021.1.041
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689–702. https://doi.org/10.1016/j.ejor.2016.10.031
Li, X., & Hoi, S. C. H. (2022). Online portfolio selection with deep reinforcement learning. ACM Transactions on Intelligent Systems and Technology, 13(2), 1–23. https://doi.org/10.1145/3487749
Li, Z., Deng, Z., & Xu, H. (2023). AI-driven forecasting in financial markets: A systematic review. Finance Research Letters, 55, 103664. https://doi.org/10.1016/j.frl.2022.103664
Lin, Y., Qin, Y., & Song, Y. (2021). Wavelet-based LSTM model for financial time series forecasting. Expert Systems with Applications, 168, 114212. https://doi.org/10.1016/j.eswa.2020.114212
Liu, F., & Wang, T. (2022). Machine learning for financial forecasting: A case study using XGBoost. Journal of Forecasting, 41(4), 625–640. https://doi.org/10.1002/for.2822
Louzada, F., Ara, A., & Fernandes, G. B. (2020). Financial forecasting systems using hybrid AI: A strategic application. Decision Support Systems, 135, 113302. https://doi.org/10.1016/j.dss.2020.113302
Lu, J., Wang, H., & Peng, Y. (2023). Intelligent anomaly detection for real-time financial monitoring. Expert Systems with Applications, 211, 118615. https://doi.org/10.1016/j.eswa.2022.118615
Mei, D., Zhang, L., & Chen, R. (2023). Reinforcement learning in financial decision-making: Opportunities and risks. Computational Economics, 62(2), 215–234. https://doi.org/10.1007/s10614-023-10234-9
Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2021). From what to how: An initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Science and Engineering Ethics, 27(1), 1–31. https://doi.org/10.1007/s11948-020-00239-7
Nasir, M. A., Huynh, T. L. D., & Nguyen, D. K. (2021). Forecasting stock returns with investor sentiment extracted from Twitter. International Review of Financial Analysis, 77, 101833. https://doi.org/10.1016/j.irfa.2021.101833
Nguyen, T. N., Ngo, L. V., & Ruël, H. (2020). Barriers to AI adoption in SMEs: A global perspective. International Journal of Information Management, 54, 102123. https://doi.org/10.1016/j.ijinfomgt.2020.102123
Nofer, M., & Hinz, O. (2020). Using social media for financial market prediction: The influence of the accuracy of forecasts. Journal of Business Research, 109, 1–11. https://doi.org/10.1016/j.jbusres.2019.11.071
Pillay, S., & Pandey, M. (2022). Strategic forecasting using AI in small businesses: Adoption and implications. Technological Forecasting and Social Change, 180, 121708. https://doi.org/10.1016/j.techfore.2022.121708
Rahman, M., Choudhury, M., & Alam, S. (2023). Strategic financial planning with AI-powered systems. Journal of Financial Transformation, 56(2), 89–104. https://doi.org/10.2139/ssrn.4563849
Rana, N. P., Slade, E. L., & Dwivedi, Y. K. (2022). Adoption of low-code and AI-driven platforms in SMEs: Implications for financial planning. Information Systems Frontiers, 24(3), 671–688. https://doi.org/10.1007/s10796-021-10109-w
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD, 1135–1144. https://doi.org/10.1145/2939672.2939778
Rundo, F., Trenta, F., Battiato, S., & Ortis, A. (2019). Machine learning for quantitative finance applications: Forecasting models and data-driven investment strategies. Mathematics, 7(9), 898. https://doi.org/10.3390/math7090898
Tang, Y., & Lin, D. (2021). Data challenges in AI-based financial modeling. Information Systems Frontiers, 23(1), 133–150. https://doi.org/10.1007/s10796-020-10033-2
Tsai, C. F., & Hsiao, Y. C. (2021). Financial time-series forecasting using improved recurrent neural networks. Information Sciences, 578, 105–119. https://doi.org/10.1016/j.ins.2021.08.004
Vasant, P., Zelinka, I., & Weber, G. W. (2021). Intelligent decision technologies in financial forecasting: Models and applications. Applied Soft Computing, 113, 107872. https://doi.org/10.1016/j.asoc.2021.107872
Vendrell-Herrero, F., Bustinza, O. F., & Parry, G. (2021). Making AI accessible: Strategic benefits of democratizing advanced forecasting tools. California Management Review, 63(4), 5–27. https://doi.org/10.1177/00081256211022676
Wamba, S. F., Akter, S., & Edwards, A. (2021). Big data analytics for forecasting and decision-making in high-velocity financial environments. International Journal of Information Management, 57, 102231. https://doi.org/10.1016/j.ijinfomgt.2020.102231
Wang, J., Wang, Y., & Zhang, Z. (2023). Reinforcement learning for portfolio management: A survey of state-of-the-art. Journal of Computational Finance, 27(1), 55–84. https://doi.org/10.21314/JCF.2023.501
Wu, H., Xu, J., Wang, J., & Long, M. (2023). Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of AAAI Conference on Artificial Intelligence, 37(11), 16532–16540. https://doi.org/10.1609/aaai.v37i11.26330
Xie, P., Chen, L., & Wu, Y. (2021). Transformer networks for stock movement prediction with news embedding. Neurocomputing, 426, 200–210. https://doi.org/10.1016/j.neucom.2020.11.007
Yoon, J., Zame, W. R., & van der Schaar, M. (2019). Time-series forecasting with attention mechanisms. IEEE Transactions on Neural Networks and Learning Systems, 30(7), 2171–2183. https://doi.org/10.1109/TNNLS.2018.2874994
Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A transformer-based framework for multivariate time series representation learning. Proceedings of the ACM SIGKDD, 2021, 2114–2124. https://doi.org/10.1145/3447548.3467401
Zhang, L., Wang, P., & Li, X. (2020). Stock market prediction via multi-source multiple instance learning. Information Fusion, 67, 40–52. https://doi.org/10.1016/j.inffus.2020.09.003
Zhang, T., & Lu, Y. (2022). The cost of AI in finance: Infrastructure, accessibility, and strategic trade-offs. Journal of Financial Innovation, 9(3), 44–61. https://doi.org/10.1186/s40854-022-00367-5
Zhang, Y., & Lin, Q. (2023). Anticipatory financial decision-making with AI-enabled scenario analysis. Decision Support Systems, 169, 113753. https://doi.org/10.1016/j.dss.2023.113753
Zhang, Y., Liu, J., & Ma, H. (2022). Comparative forecasting approaches in financial decision-making: AI vs traditional econometrics. Journal of Economic Behavior & Organization, 199, 289–300. https://doi.org/10.1016/j.jebo.2022.04.012
Zhou, Q., & Zhang, Y. (2022). Financial text mining using transformer-based models. Journal of Computational Finance, 26(1), 45–63. https://doi.org/10.21314/JCF.2022.421
Zhou, Q., Lin, Y., & Wei, W. (2022). A comprehensive study on financial time series data quality for AI applications. Journal of Data and Information Quality, 14(1), 1–23. https://doi.org/10.1145/3501909
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 OPTIMAL Jurnal Ekonomi dan Manajemen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.