AI in Financial Forecasting : Improving Accuracy and Strategy

Authors

  • M.Mahdi Alatas Universitas Bina Sarana Informatika
  • Bilgah Bilgah Universitas Bina Sarana Informatika
  • Eka Putri Hanyani Universitas Bina Sarana Informatika
  • Resti Yulistria Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/optimal.v5i1.6541

Keywords:

AI, financial forecasting, LSTM networks, predictive analytics, strategic decision-making

Abstract

Financial forecasting faces growing challenges due to market volatility and the inadequacy of traditional models like ARIMA and linear regression in handling non-linear, high-frequency financial data. Artificial intelligence (AI), particularly models such as long short-term memory (LSTM) networks and transformer-based systems, has demonstrated superior performance in tasks like predicting S&P 500 index movements and assessing corporate credit risk in real time. These models not only improve accuracy but also enable strategic applications—for instance, integrating live sentiment data from financial news to adjust portfolio allocations within milliseconds. AI systems have also been used by investment firms to simulate recession scenarios and guide capital reserve strategies. However, adoption remains hindered by issues such as the “black box” nature of deep learning, inconsistent data quality, and concerns over algorithmic bias. As AI continues to evolve, its value lies not just in forecasting precision but in supporting adaptive, transparent, and forward-looking financial management

References

Alam, N., Wahid, A. N. M., & Riaz, S. (2023). Cloud-based AI forecasting for SME financial resilience: A strategic approach. Journal of Small Business Management, 61(1), 72–89. https://doi.org/10.1080/00472778.2022.2084582

Alessi, L., Barigozzi, M., & Capasso, M. (2020). Monitoring systemic risk via dynamic connectedness measures. Journal of Financial Stability, 45, 100744. https://doi.org/10.1016/j.jfs.2020.100744

Amaral, J., Lopes, A. M., & Sousa, J. (2021). Integrated AI-driven financial decision-making for enterprise performance. Journal of Enterprise Information Management, 34(5), 1570–1587. https://doi.org/10.1108/JEIM-10-2020-0406

Arora, S., & Taylor, D. (2023). AI-powered decision support systems in corporate financial planning. Journal of Financial Analytics, 14(2), 101–117. https://doi.org/10.1016/j.finana.2022.10.006

Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046–7056. https://doi.org/10.1016/j.eswa.2015.05.013

Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE, 12(7), e0180944. https://doi.org/10.1371/journal.pone.0180944

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

Bhat, W. A., & Zahedi, F. (2022). Leveraging alternative data for financial forecasting: A deep learning approach. Decision Support Systems, 155, 113697. https://doi.org/10.1016/j.dss.2021.113697

Borovkova, S., & Tsiamas, I. (2019). An ensemble of LSTM neural networks for high-frequency stock market classification. Journal of Forecasting, 38(6), 600–609. https://doi.org/10.1002/for.2587

Bruno, G., Esposito, E., & Mastroianni, M. (2023). AI-enhanced financial planning systems: A comparative study in European firms. European Management Journal, 41(1), 72–84. https://doi.org/10.1016/j.emj.2022.08.006

Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the ‘good society’: The US, EU, and UK approach. Science and Engineering Ethics, 24(2), 505–528. https://doi.org/10.1007/s11948-017-9901-7

Chen, X., Wang, J., & Liu, Y. (2020). Forecasting stock prices with deep learning models: A comparative study. Applied Soft Computing, 95, 106119. https://doi.org/10.1016/j.asoc.2020.106119

De Oliveira, F. A., Nobre, H. L., & Zanin, M. (2021). Strategic planning with predictive analytics: An AI-driven approach to enterprise finance. Technological Forecasting and Social Change, 173, 121057. https://doi.org/10.1016/j.techfore.2021.121057

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint, arXiv:1702.08608. https://doi.org/10.48550/arXiv.1702.08608

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054

Ghosal, T., Ghosh, S., & Mitra, P. (2022). Multimodal sentiment fusion for real-time financial trend forecasting. IEEE Transactions on Affective Computing, 13(2), 560–573. https://doi.org/10.1109/TAFFC.2020.2987892

Ghosh, R., Aggarwal, S., & Nayak, R. (2023). AI-powered forecasting for strategic corporate finance: A framework for predictive and prescriptive analytics. Technovation, 120, 102603. https://doi.org/10.1016/j.technovation.2022.102603

Gupta, R., & Sen, A. (2022). Regulatory implications of AI adoption in financial services. Journal of Financial Regulation and Compliance, 30(3), 345–360. https://doi.org/10.1108/JFRC-03-2021-0030

Holzinger, A., Malle, B., Kieseberg, P., & Weippl, E. (2021). Toward multi-modal explainable AI in finance: Ethical and practical dimensions. Scientific Reports, 11, 21420. https://doi.org/10.1038/s41598-021-99960-2

Huang, J. Z., Zhou, H., & Fang, Y. (2020). Forecasting stock market movements with deep learning: A review. Journal of Risk and Financial Management, 13(9), 214. https://doi.org/10.3390/jrfm13090214

Kakushadze, Z., & Yu, W. (2020). Financial modeling with machine learning: A survey. Big Data and Cognitive Computing, 4(2), 12. https://doi.org/10.3390/bdcc4020012

Kara, E., Aydın, M., & Altın, A. (2021). Financial forecasting with ensemble models: A comparative study. Financial Innovation, 7(1), 1–21. https://doi.org/10.1186/s40854-021-00273-2

Khandani, A. E., Kim, A. J., & Lo, A. W. (2021). Consumer credit-risk models via machine learning. Journal of Financial Data Science, 3(1), 10–25. https://doi.org/10.3905/jfds.2021.1.041

Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689–702. https://doi.org/10.1016/j.ejor.2016.10.031

Li, X., & Hoi, S. C. H. (2022). Online portfolio selection with deep reinforcement learning. ACM Transactions on Intelligent Systems and Technology, 13(2), 1–23. https://doi.org/10.1145/3487749

Li, Z., Deng, Z., & Xu, H. (2023). AI-driven forecasting in financial markets: A systematic review. Finance Research Letters, 55, 103664. https://doi.org/10.1016/j.frl.2022.103664

Lin, Y., Qin, Y., & Song, Y. (2021). Wavelet-based LSTM model for financial time series forecasting. Expert Systems with Applications, 168, 114212. https://doi.org/10.1016/j.eswa.2020.114212

Liu, F., & Wang, T. (2022). Machine learning for financial forecasting: A case study using XGBoost. Journal of Forecasting, 41(4), 625–640. https://doi.org/10.1002/for.2822

Louzada, F., Ara, A., & Fernandes, G. B. (2020). Financial forecasting systems using hybrid AI: A strategic application. Decision Support Systems, 135, 113302. https://doi.org/10.1016/j.dss.2020.113302

Lu, J., Wang, H., & Peng, Y. (2023). Intelligent anomaly detection for real-time financial monitoring. Expert Systems with Applications, 211, 118615. https://doi.org/10.1016/j.eswa.2022.118615

Mei, D., Zhang, L., & Chen, R. (2023). Reinforcement learning in financial decision-making: Opportunities and risks. Computational Economics, 62(2), 215–234. https://doi.org/10.1007/s10614-023-10234-9

Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2021). From what to how: An initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Science and Engineering Ethics, 27(1), 1–31. https://doi.org/10.1007/s11948-020-00239-7

Nasir, M. A., Huynh, T. L. D., & Nguyen, D. K. (2021). Forecasting stock returns with investor sentiment extracted from Twitter. International Review of Financial Analysis, 77, 101833. https://doi.org/10.1016/j.irfa.2021.101833

Nguyen, T. N., Ngo, L. V., & Ruël, H. (2020). Barriers to AI adoption in SMEs: A global perspective. International Journal of Information Management, 54, 102123. https://doi.org/10.1016/j.ijinfomgt.2020.102123

Nofer, M., & Hinz, O. (2020). Using social media for financial market prediction: The influence of the accuracy of forecasts. Journal of Business Research, 109, 1–11. https://doi.org/10.1016/j.jbusres.2019.11.071

Pillay, S., & Pandey, M. (2022). Strategic forecasting using AI in small businesses: Adoption and implications. Technological Forecasting and Social Change, 180, 121708. https://doi.org/10.1016/j.techfore.2022.121708

Rahman, M., Choudhury, M., & Alam, S. (2023). Strategic financial planning with AI-powered systems. Journal of Financial Transformation, 56(2), 89–104. https://doi.org/10.2139/ssrn.4563849

Rana, N. P., Slade, E. L., & Dwivedi, Y. K. (2022). Adoption of low-code and AI-driven platforms in SMEs: Implications for financial planning. Information Systems Frontiers, 24(3), 671–688. https://doi.org/10.1007/s10796-021-10109-w

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD, 1135–1144. https://doi.org/10.1145/2939672.2939778

Rundo, F., Trenta, F., Battiato, S., & Ortis, A. (2019). Machine learning for quantitative finance applications: Forecasting models and data-driven investment strategies. Mathematics, 7(9), 898. https://doi.org/10.3390/math7090898

Tang, Y., & Lin, D. (2021). Data challenges in AI-based financial modeling. Information Systems Frontiers, 23(1), 133–150. https://doi.org/10.1007/s10796-020-10033-2

Tsai, C. F., & Hsiao, Y. C. (2021). Financial time-series forecasting using improved recurrent neural networks. Information Sciences, 578, 105–119. https://doi.org/10.1016/j.ins.2021.08.004

Vasant, P., Zelinka, I., & Weber, G. W. (2021). Intelligent decision technologies in financial forecasting: Models and applications. Applied Soft Computing, 113, 107872. https://doi.org/10.1016/j.asoc.2021.107872

Vendrell-Herrero, F., Bustinza, O. F., & Parry, G. (2021). Making AI accessible: Strategic benefits of democratizing advanced forecasting tools. California Management Review, 63(4), 5–27. https://doi.org/10.1177/00081256211022676

Wamba, S. F., Akter, S., & Edwards, A. (2021). Big data analytics for forecasting and decision-making in high-velocity financial environments. International Journal of Information Management, 57, 102231. https://doi.org/10.1016/j.ijinfomgt.2020.102231

Wang, J., Wang, Y., & Zhang, Z. (2023). Reinforcement learning for portfolio management: A survey of state-of-the-art. Journal of Computational Finance, 27(1), 55–84. https://doi.org/10.21314/JCF.2023.501

Wu, H., Xu, J., Wang, J., & Long, M. (2023). Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of AAAI Conference on Artificial Intelligence, 37(11), 16532–16540. https://doi.org/10.1609/aaai.v37i11.26330

Xie, P., Chen, L., & Wu, Y. (2021). Transformer networks for stock movement prediction with news embedding. Neurocomputing, 426, 200–210. https://doi.org/10.1016/j.neucom.2020.11.007

Yoon, J., Zame, W. R., & van der Schaar, M. (2019). Time-series forecasting with attention mechanisms. IEEE Transactions on Neural Networks and Learning Systems, 30(7), 2171–2183. https://doi.org/10.1109/TNNLS.2018.2874994

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A transformer-based framework for multivariate time series representation learning. Proceedings of the ACM SIGKDD, 2021, 2114–2124. https://doi.org/10.1145/3447548.3467401

Zhang, L., Wang, P., & Li, X. (2020). Stock market prediction via multi-source multiple instance learning. Information Fusion, 67, 40–52. https://doi.org/10.1016/j.inffus.2020.09.003

Zhang, T., & Lu, Y. (2022). The cost of AI in finance: Infrastructure, accessibility, and strategic trade-offs. Journal of Financial Innovation, 9(3), 44–61. https://doi.org/10.1186/s40854-022-00367-5

Zhang, Y., & Lin, Q. (2023). Anticipatory financial decision-making with AI-enabled scenario analysis. Decision Support Systems, 169, 113753. https://doi.org/10.1016/j.dss.2023.113753

Zhang, Y., Liu, J., & Ma, H. (2022). Comparative forecasting approaches in financial decision-making: AI vs traditional econometrics. Journal of Economic Behavior & Organization, 199, 289–300. https://doi.org/10.1016/j.jebo.2022.04.012

Zhou, Q., & Zhang, Y. (2022). Financial text mining using transformer-based models. Journal of Computational Finance, 26(1), 45–63. https://doi.org/10.21314/JCF.2022.421

Zhou, Q., Lin, Y., & Wei, W. (2022). A comprehensive study on financial time series data quality for AI applications. Journal of Data and Information Quality, 14(1), 1–23. https://doi.org/10.1145/3501909

Downloads

Published

2025-06-16

How to Cite

M.Mahdi Alatas, Bilgah Bilgah, Eka Putri Hanyani, & Resti Yulistria. (2025). AI in Financial Forecasting : Improving Accuracy and Strategy. OPTIMAL Jurnal Ekonomi Dan Manajemen, 5(1), 521–532. https://doi.org/10.55606/optimal.v5i1.6541