Implementasi Float Switch Level Sensor, Ultrasonik Sensor, dan Water Flow Sensor pada Prototipe Sistem Kendali Pompa Asam Sulfat Berbasis Arduino
DOI:
https://doi.org/10.55606/kreatif.v5i3.7792Keywords:
Arduino, Automation, Float Switch, Sulfuric Acid, Ultrasonic Sensor, Water Flow SensorAbstract
The handling of hazardous chemicals, such as sulfuric acid (H₂SO₄), in industrial processes requires a control system that ensures both operational reliability and safety. Manual pump operation in such contexts carries a significant risk of over-pumping, leaks, and exposure, which can lead to environmental contamination and safety hazards. To address this issue, this study focuses on the design and implementation of an automatic pump control system prototype using the Arduino Mega 2560 microcontroller. The system integrates three key sensors: a float switch for basic level detection, an ultrasonic sensor (HC-SR04) for precise liquid level measurement, and a water flow sensor (YF-S201) for monitoring flow rate. The prototype is programmed to automatically regulate pump operation based on real-time input from the sensors. When the liquid level reaches a predetermined threshold, the pump activates or deactivates accordingly. Sensor data, including fluid height and flow rate, are displayed in real-time on a 3.5-inch TFT LCD, allowing for direct operator monitoring. Both the hardware configuration and software algorithms were tested for functionality, response time, and accuracy under simulated industrial conditions. The results indicate that the system can reliably control pump activation with minimal error rates. The ultrasonic sensor demonstrated an average measurement error of 0.94%, while the water flow sensor achieved an error rate of 1.19%. The software successfully processed sensor data and executed output actions consistent with the programmed logic. Overall, this automated control system proved effective in mitigating the risk of over-pumping and improving safety in handling hazardous chemical fluids. Given its accuracy, reliability, and cost-effectiveness, the developed prototype is considered suitable for small- to medium-scale industrial applications, with potential for further refinement to meet larger operational demands.
References
Aji, C. S., & Pangestu, A. F. (2021). Speaker monitor dengan antarmuka LCD digital. Jurnal Pendidikan Tambusai, 5(3), 6752–6758.
Apriyanto, H. (2015). Rancang bangun pintu air otomatis menggunakan water level float switch berbasis mikrokontroler. Jurnal Sisfokom (Sistem Informasi dan Komputer), 4(1), 22–27. https://doi.org/10.32736/sisfokom.v4i1.132
Arifin, T. N., Pratiwi, G. F., & Janrafsasih, A. (2022). Sensor ultrasonik sebagai sensor jarak. Jurnal Tera, 2(2), 55–62.
Artanto, D. (2009). Merakit PLC dengan mikrokontroler. Elex Media Komputindo.
Fitriyanto, I., Amri, F., & Robiyanto, R. (2024). Desain meteran air prabayar berbasis sensor YF-S201 dengan generator air mini sebagai catu daya. Jurnal Amplifier: Jurnal Ilmiah Bidang Teknik Elektro dan Komputer, 14(2), 168–173. https://doi.org/10.33369/jamplifier.v14i2.37185
Kartiria, K., Erhaneli, E., & C. Y. W. (2021). Penerapan mikrokontroler Arduino Mega 2560 sebagai monitoring pada pembacaan arus 3 phasa di gardu induk 150 kV Lubuk Alung. Jurnal Teknik Elektro, 10(1), 37–45.
Muamaroh, N., & Christanto, F. W. (2024). Pengukur penggunaan air otomatis menggunakan water flow sensor YF-S201 dan NodeMCU ESP8266 berbasis IoT. JIKO (Jurnal Informatika dan Komputer), 8(1), 88. https://doi.org/10.26798/jiko.v8i1.1104
Onyinyechukwu, C. (2023). Design, analysis and remote monitoring of a solar powered orphan oil well pumping system in Nigeria [Master’s thesis, Memorial University of Newfoundland]. https://doi.org/10.48336/QRXW-GN85
Petru, L. T., Tivlea, M. V., & Popa, S. E. (2023). Water level control and monitoring system in a tank made with Arduino Uno and NodeMCU ESP8266 development boards. Preprints. https://www.preprints.org/frontend/manuscript/680b0662a1e51dd33f670a2d812386fb/download_pub
Prastyo, E. A. (2018). Software Arduino IDE.
Prastyo, E. A. (2024). Arduino Mega 2560: Fitur dan kinerja.
Sangeetha, T., & Periyathambi, E. (2024). Automatic nutrient estimator: Distributing nutrient solution in hydroponic plants based on plant growth. PeerJ Computer Science. https://peerj.com/articles/cs-1871/
Santoso, H. (2015). Cara kerja sensor ultrasonik, rangkaian, & aplikasinya.
Sarwar, A. (2022). Design and analysis of a solar water pumping for a fish farm in Pakistan [Master’s thesis, Memorial University of Newfoundland]. https://doi.org/10.48336/8AGA-RZ14
Sugiyono. (2018). Metode penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.
Sugiyono. (2019). Metode penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.
Sularso, & Tahara, H. (2000). Pompa dan kompresor: Pemilihan, pemakaian dan pemeliharaan. PT Pradnya Paramita.
Suleiman, R. (2023). Low-cost IoT-based water quality monitoring system for small-scale fish farmers in Nigeria [Master’s thesis, Technikum Wien University of Applied Sciences]. https://epub.technikum-wien.at/obvftwhsmmig/content/titleinfo/9746996/full.pdf
Wagino, & Arafat. (2018). Tombol untuk fungsi umum, dan sederetan menu: Software yang ditulis menggunakan Arduino dinamakan sketches. Ilmiah Technologia, 9(3), 192–196.
Yudha, P. S. F., & Sani, R. A. (2017). Implementasi sensor ultrasonik HC-SR04 sebagai sensor parkir mobil berbasis Arduino. Jurnal Einstein, 5(3), 19–26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 KREATIF: Jurnal Pengabdian Masyarakat Nusantara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.