Implementasi Metode Seleksi Fitur Untuk Penentuan Indikator pada Klasifikasi Kompetensi Pemetaan Kuadran 9 di Pemprov Jateng
DOI:
https://doi.org/10.55606/jitek.v5i3.8366Keywords:
Data Mining, Quadrant 9 Competency Classification, Feature Selection, Naive Bayes , Forward SelectionAbstract
Quadrant 9 (nine) is a model of employee competency mapping which will be used as a strategy for developing talented individuals and individuals who have weaknesses. In addition, quadrant 9 (nine) is also used in succession planning by identifying anyone who has the potential to become a leader in the organization. This study aims to obtain a data mining algorithm with a more accurate selection feature to find indicators that affect the classification of quadrant 9 competencies. The Forward Selection feature selection algorithm based on Naive Bayes is proven to be accurate and effective in determining the most influential attributes, namely IQ/Thinking Capacity, Self-Management, Social Communication, Service Orientation, Decision Making, Managing Others with 79.10% accuracy results and is included in the "Good Kappa" category.
References
[1] Badan Kepegawaian Daerah, [Online]. Available: https://bkd.jatengprov.go.id/.
[2] Peraturan Presiden, "Peraturan Presiden Nomor 81 Tahun 2010 tentang Grand Design Reformasi Birokrasi 2010-2015 Republik Indonesia," 2010.
[3] Kementerian Pendayagunaan Aparatur Negara dan Reformasi Birokrasi, "Permenpan RB Nomor 3 Tahun 2020".
[4] Kementerian Pendayagunaan Aparatur Negara, "Surat Edaran Menpan Nomor 16 Tahun 2012 tentang tata cara pengisian jabatan struktural yang lowong secara terbuka di lingkungan instansi pemerintah," 2012.
[5] F. Gorunescu, Data Mining: Concepts, Model and Techniques, vol. 12, P. J. Kacprzyk and P. L. C. Jain, Eds., Berlin, Jerman: Springer, 2011.
[6] Han, Data Mining Concept And Technique, 3rd Edition ed., A. Stephan, Ed., Champaign: Multiscience Press, 2012.
[7] O. Maimon and L. Rokach, Data Mining and Knowledge Discovery, 2nd, Springer, 2010.
[8] I. H. Witten, f. Eibe and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed ed., A. Stephan and Burlington, Eds., United States of America: Morgan Kaufmann, 2011.
[9] X. Wu and V. Kumar, The top ten Algorithms in Data Mining, Taylor & Francis Group, LLC, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika Dan Tekonologi Komputer (JITEK)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





