Penerapan Algoritma Logistic Regression Untuk Memprediksi Penyakit Jantung

Authors

  • Muhammad Fitra Rhomadon Universitas Bina Darma
  • Wydyanto Wydyanto Universitas Bina Darma
  • A. Haidar Mirza Universitas Bina Darma
  • Nurul Huda Universitas Bina Darma

DOI:

https://doi.org/10.55606/jitek.v5i3.8105

Keywords:

Logistic Regression, Heart Disease, Prediction, Machine Learning, Data Mining

Abstract

Heart disease is one of the leading causes of death worldwide, including in Indonesia. Early detection of heart disease risk is crucial to prevent more severe complications and improve patients' quality of life. This study aims to apply the Logistic Regression algorithm to build a data-driven heart disease prediction model. The dataset used is from Kaggle, with 1,025 patient data and 14 attributes covering risk factors such as age, gender, blood pressure, cholesterol, maximum heart rate, and others. The research process was conducted using the CRISP-DM approach, which includes business understanding, data exploration, preprocessing, modeling, evaluation, and model testing. The preprocessing stage includes data cleaning, encoding categorical variables, standardizing numeric data, and dividing the data into training and test data. The model was developed using the Python programming language and the scikit-learn library, then evaluated using metrics such as accuracy, precision, recall, F1-score, confusion matrix, and ROC-AUC. The evaluation results showed that the Logistic Regression model was able to provide good prediction results, with an accuracy of 0.93, a precision of 0.93, a recall of 0.96, and an F1-score of 0.95. With this performance, this model can be used as a tool for medical personnel in early detection of heart disease risk and supporting more effective and efficient decision-making.

References

[1] World Health Organization, “Cardiovascular diseases (CVDs),” World Health Organization, 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

[2] Kementerian Kesehatan Republik Indonesia, “Penyakit jantung penyebab utama kematian,” Kementerian Kesehatan Republik Indonesia, 2019. https://p2ptm.kemkes.go.id/informasi-p2ptm/penyakit-jantung

[3] J. P. Husada, A. Handayani, and R. W. Nasution, “Hubungan Tingkat Pendidikan Dan Status Sosial Ekonomi Terhadap Tingkat Pengetahuan Tentang Faktor Risiko Penyakit Jantung Koroner Pada Pasien Penyakit Jantung Koroner,” J. Pandu Husada, vol. 5, 2024, doi: https://jurnal.umsu.ac.id/index.php/JPH.

[4] Rumah Sakit PELNI, “Peran Penting Deteksi Dini dalam Menjaga Kesehatan Jantung,” Rumah Sakit PELNI, 2022. https://www.rspelni.co.id/peran-penting-deteksi-dini-dalam-menjaga-kesehatan-jantung/

[5] D. Kurniawan Saputro, M. Fiko Rastio Ajie, S. Azizah, and D. Hartanti, “Penerapan Logistic Regression untuk Mendeteksi Penyakit Jantung pada Pasien,” in Prosiding Seminar Nasional Teknologi Informasi dan Bisnis, 2023, pp. 666–671.

[6] J. J. Pangaribuan, H. Tanjaya, and Kenichi, “Mendeteksi Penyakit Jantung Menggunakan Machine Learning Dengan Algoritma Logistic Regression,” J. Inf. Syst. Dev., vol. 6, no. 2, pp. 1–10, 2021.

[7] D. Sitanggang, V. Nicholas, N.; Wilson, A. R. A. Sinaga, and A. D. Simanjuntak, “Implementasi Data Mining untuk Memprediksi Penyakit Jantung Menggunakan Metode K-Nearest Neighbor dan Logistic Regression,” J. TEKINKOM, vol. 5, no. 2, pp. 493–501, 2022, doi: https://doi.org/10.37600/tekinkom.v5i2.698.

[8] Widiawati, L. Nurazizah, and I. R. Yunita, “Implementasi Algoritma Logistic Regression pada Pembuatan Website Sederhana untuk Prediksi Penyakit Jantung,” J. TEKINKOM, vol. 15, no. 1, 2024.

[9] I. S. B. Azhar and W. K. Sari, “Penerapan Data Mining dan Teknologi Machine Learning pada Klasifikasi Penyakit Jantung,” JSI J. Sist. Inf., vol. 4, no. 1, pp. 2560–2568, 2022, doi: http://ejournal.unsri.ac.id/index.php/jsi/index.

[10] G. R. U. Asyafiiyah and R. M. Akbar, “Prediksi Pasien Terindikasi Penyakit Jantung Menggunakan Metode Logistic Regression,” SUBMIT J. Ilm. Teknol. Inf. dan Sains, vol. 4, no. 1, pp. 19–23, 2024.

[11] M. Napiah and S. Heristian, “Perbandingan Algoritma Machine Learning pada Klasifikasi Penyakit Jantung,” J. Infortech, vol. 6, no. 1, pp. 46–51, 2024.

[12] A. Y. Agusyul and F. Firmansyah, “Prediksi Penyakit Jantung Menggunakan Algoritma Random Forest,” J. Minfo Polgan, vol. 12, no. 2, 2023, doi: https://doi.org/10.33395/jmp.v12i2.13214.

[13] W. Lestari and S. Sumarlinda, “Studi Komparatif Model Klasifikasi Kerentanan Penyakit Jantung Menggunakan Algoritma Machine Learning,” SATIN - Sains Dan Teknol. Inf., vol. 9, no. 1, pp. 107–115, 2023, doi: https://doi.org/10.33372/stn.v9i1.918.

[14] A. A. A. Daniswara and I. K. D. Nuryana, “Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru,” J. Informatics Comput. Sci., vol. 5, no. 1, pp. 97–100, 2023.

[15] G. Gunawan, S. A. Wibowo, and W. Andriani, “Evaluasi Model Deep Learning pada Pola Dataset Biomedis,” J. SAINTEKOM, vol. 14, no. 2, pp. 195–207, 2024, doi: https://doi.org/10.33020/saintekom.v14i2.738.

[16] M. Fadli and R. A. Saputra, “Klasifikasi dan Evaluasi Performa Model Random Forest untuk Prediksi Stroke,” J. Tek., vol. 12, no. 2, pp. 72–80, 2023.

Downloads

Published

2025-11-29

How to Cite

Muhammad Fitra Rhomadon, Wydyanto Wydyanto, A. Haidar Mirza, & Nurul Huda. (2025). Penerapan Algoritma Logistic Regression Untuk Memprediksi Penyakit Jantung . Jurnal Informatika Dan Tekonologi Komputer (JITEK), 5(3), 133–147. https://doi.org/10.55606/jitek.v5i3.8105

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.