Klasifikasi Konten Thumbnail TikTok untuk Deteksi Kata Kasar Menggunakan Support Vector Machine (SVM)
DOI:
https://doi.org/10.55606/jitek.v5i2.7091Keywords:
Tiktok, thumbnail, katakasar, klasifikasi visual, Support Vector MachineAbstract
The rapid growth of the social media platform TikTok has introduced new challenges in content moderation, particularly in detecting offensive language that appears not only in text form but also in visual elements such as video thumbnails. This study aims to develop a classification model capable of detecting offensive content in TikTok thumbnails using the Support Vector Machine (SVM) algorithm. Data were collected through web scraping of 4,153 TikTok videos containing offensive elements, which were then processed and manually labeled into 24 classes of offensive words. The dataset was divided into training and testing sets with a ratio of 20:80. Model performance was evaluated using AUC, accuracy, precision, recall, F1-Score, and Matthews Correlation Coefficient (MCC). The results show that the SVM model achieved an AUC of 0.791, indicating a reasonably good ability to distinguish between classes. However, accuracy (0.340), precision (0.293), recall (0.340), F1-Score (0.298), and MCC (0.264) indicate that the classification performance remains low. These findings suggest the need to improve Preprocessing quality, select more representative visual features, and develop more advanced classification methods. This research contributes to expanding the detection approach of harmful content from text-based to visual-based domains and lays the groundwork for more comprehensive automated content moderation systems in the future.
References
[1] M. Attar Jibran, A. Eviyanti, dan Y. Findawati, “Deteksi Ujaran Kebencian Menggunakan Metode Support Vector Machine (SVM),” KESATRIA: Jurnal Penerapan Sistem Informasi, vol. 4, no. 4, pp. 890–900, Okt. 2023. doi: 10.30645/kesatria.v4i4.239
[2] W. Ayu, R. Abdulhakim, Y. Umaidah, dan J. H. Jaman, “Optimasi Support Vector Machine Berbasis Particle Swarm Optimization Un-tuk Mendeteksi Hate Speech Pilkada Karawang,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 190–201, 2021. DOI: 10.30871/jaic.v5i2.3473
[3] L. P. A. S. Tjahyanti, “Pendeteksian Bahasa Kasar (Abusive Language) Dan Ujaran Kebencian (Hate Speech) Dari Komentar Di Jejar-ing Sosial,” J. Chem. Inf. Model., vol. 7, no. 9, pp. 1689–1699, 2020.
[4] W. A. Luqyana, I. Cholissodin, dan R. S. Perdana, “Analisis sentimen cyberbullying pada komentar instagram dengan metode klasifikasi Support Vector Machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 4704–4713, 2018.
[5] A. Abdurohim et al., “Penerapan SVM untuk Klasifikasi Komentar Spam di Instagram,” Jurnal JURTIK, vol. 2, no. 1, pp. 13–20, 2024.
[6] H. Saputra et al., “Klasifikasi Analisis Sentimen Menggunakan Word2Vec, SMOTE dan Support Vector Machine,” Jurnal INSTEK, vol. 8, no. 2, pp. 157–166, 2022. DOI: 10.24252/instek.v10i1.54889
[7] E. Indriyani et al., “Analisis Sentimen Komentar Pengguna TikTok Menggunakan Algoritma SVM,” Jurnal Teknologi dan Informat-ika, vol. 6, no. 1, pp. 19–27, 2023.
[8] S. Tangke, A. Syaiful, dan A. Karim, “Analisis Sentimen Komentar Pengguna Aplikasi TikTok Menggunakan SVM dan Random Forest,” Jurnal TIMES, vol. 12, no. 1, pp. 45–51, 2024.
[9] R. C. Liem et al., “Klasifikasi Komentar Produk Skincare di TikTok Menggunakan SVM dan Naïve Bayes,” Jurnal AICoMS, vol. 3, no. 1, pp. 88–95, 2024.
[10] A. Kurniawan dan M. Al Qorni, “Analisis Sentimen terhadap Penutupan TikTok Shop Menggunakan SVM,” Jurnal MATRIK, vol. 25, no. 2, pp. 91–98, 2023.
[11] Romindo, J. J. P., & Barus, O. P. (2023). Implementasi Algoritma TF‑IDF dan Support Vector Machine terhadap Analisis Pendeteksi Komentar Cyberbullying di Media Sosial TikTok. Device, 13(1).
[12] Ulfah & Najiah, “Implementasi Web Scraping pada Situs Jurnal SINTA menggunakan Python, Selenium, dan BeautifulSoup,” J. In-formatika Indones., vol. 7, no. 1, pp. 29–36, Feb. 2023.
[13] K. Pratama et al., “Implementasi Teknik Web Scraping dan Fitur Data Eksternal pada …,” Transient, Universitas Diponegoro, 2021.
[14] A. Tri Jaka H., “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Analisis Sentimen,” J. Bus. Audit Inf. Syst., vol. 4, no. 2, pp. 16–22, 2021.
[15] D. S. Y. Kartika dan H. Maulana, "Preprosesing serta Normalisasi pada Dataset Kupu-Kupu untuk Ekstraksi Fitur Warna, Bentuk dan Tekstur," Complete: Journal of Computer, Electronic, and Telecommunication, vol. 1, no. 2, pp. 1–8, 2019, doi: 10.52435/complete.v1i2.76.
[16] A. Rizky, M. H. Saputra, dan A. I. Nugroho, “Penerapan Deep Learning untuk Klasifikasi Teks Ujaran Kebencian pada Media Sosial Twitter,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 3, no. 1, pp. 45–52, 2021.
[17] L. P. Handayani dan R. K. Wardhani, “Klasifikasi Ucapan Kata Dengan Support Vector Machine (SVM),” Jurnal Masyarakat Informat-ika, vol. 3, no. 6, 2020. doi: 10.14710/jmasif.3.6.8456
[18] F. R. A. Harianto, Z. Alawi, dan I. A. Sa’ida, “Pengaruh Komposisi Split Data pada Akurasi Klasifikasi Penderita Diabetes Menggunakan Algoritma Machine Learning,” Jurnal Sistem Informasi dan Informatika (Simika), vol. 8, no. 1, pp. 36–44, Jan. 2025. doi: 10.47080/simika.v8i1.3663
[19] P. K. Handayani, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Analisis Pola Klasifikasi Pada Parkinson’S Dataset,” In-dones. J. Technol. Informatics Sci., vol. 3, no. 1, pp. 31–35, 2021, doi:10.24176/ijtis.v3i1.7530
[20] W. Zhong and L. Du, “Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Col-lision Data of Urban Roads,” Sustain., vol. 15, no. 4, 2023, doi: 10.3390/su15042944
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika Dan Tekonologi Komputer (JITEK)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.