Penerapan Algoritma Support Vector Machine dan XGBoost Dalam Mengklasifikasikan Sentimen Opini Publik Terhadap Aplikasi Uber
DOI:
https://doi.org/10.55606/jitek.v5i1.5735Keywords:
XGBoost, Support Vector Machine, Uber Reviews, SMOTE, NLPAbstract
The development of application-based transportation services such as Uber has driven an increase in the number of public opinions distributed through various digital platforms. Sentiment analysis of this public opinion is important to understand user perceptions of Uber services. This study applies the Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) algorithms to classify public opinion sentiment, by optimizing data imbalance using the Synthetic Minority Oversampling Technique (SMOTE). The data used comes from Uber reviews on public platforms, which are grouped into positive, negative, and neutral sentiments. The experimental results show that the SVM algorithm has superior performance with an accuracy of 94%, while XGBoost experienced an increase in accuracy of up to 93% after applying SMOTE. This study provides insight into the effectiveness of machine learning algorithms in sentiment analysis and its implementation in the development strategy of application-based transportation services.
Abstrak: Perkembangan layanan transportasi berbasis aplikasi seperti Uber telah mendorong peningkatan jumlah opini publik yang disalurkan melalui berbagai platform digital. Analisis sentimen terhadap opini publik ini menjadi penting untuk memahami persepsi pengguna terhadap layanan Uber. Penelitian ini menerapkan algoritma Mesin Vektor Pendukung (SVM) dan Peningkatan Gradien Ekstrem (XGBoost) untuk mengklasifikasikan sentimen opini publik, dengan mengoptimalkan ketidakseimbangan data menggunakan Synthetic Minority Oversampling Technique (SMOTE). Data yang digunakan berasal dari ulasan Uber di platform publik, yang dikategorikan ke dalam sentimen positif, negatif, dan netral. Hasil eksperimen menunjukkan bahwa algoritma SVM memiliki performa lebih unggul dengan akurasi mencapai 94%, sementara XGBoost mengalami peningkatan akurasi hingga 93% setelah penerapan SMOTE. Penelitian ini memberikan wawasan mengenai efektivitas algoritma pembelajaran mesin dalam analisis sentimen serta implikasinya terhadap strategi pengembangan layanan transportasi berbasis aplikasi.
References
[1] T. Online and D. Indonesia, “Tranpostasi ojek online,” pp. 5–14, 2019.
[2] M. A. K. Sugianto, “Tingkat Ketertarikan Masyarakat Terhadap Transportasi Online, Angkutan Pribadi Dan Angkutan Umum Berdasarkan Persepsi,” vol. 1, no. 2, pp. 51–58, 2020.
[3] A. Apriliani, M. Budhiluhoer, A. Jamaludin, and K. Prihandani, “Systematic Literature Review Kepuasan Pelanggan terhadap Jasa Transportasi Online,” Systematics, vol. 2, no. 1, p. 12, 2020, doi: 10.35706/sys.v2i1.3530.
[4] V. P. K. Turlapati and M. R. Prusty, “Outlier-SMOTE: A refined oversampling technique for improved detection of COVID-19,” Intell. Med., vol. 3–4, no. July, p. 100023, 2020, doi: 10.1016/j.ibmed.2020.100023.
[5] S. D. A. Bujang et al., “Multiclass Prediction Model for Student Grade Prediction Using Machine Learning,” IEEE Access, vol. 9, pp. 95608–95621, 2021, doi: 10.1109/ACCESS.2021.3093563.
[6] S. F. N. Halim and U. Azmi, “Analisis Perbandingan Klasifikasi dan Penerapan Teknik SMOTE Dalam Imbalanced Data Pada Credit Card Default,” J. Sains dan Seni ITS, vol. 12, no. 2, 2023, doi: 10.12962/j23373520.v12i2.111833.
[7] S. Rabbani, D. Safitri, N. Rahmadhani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM: Comparative Evaluation of SVM Kernels for Sentiment Classification in Fuel Price Increase Analysis,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023.
[8] R. Rahmaddeni, M. K. Anam, Y. Irawan, S. Susanti, and M. Jamaris, “Comparison of Support Vector Machine and XGBSVM in Analyzing Public Opinion on Covid-19 Vaccination,” Ilk. J. Ilm., vol. 14, no. 1, pp. 32–38, 2022, doi: 10.33096/ilkom.v14i1.1090.32-38.
[9] R. S. Putra, W. Agustin, M. K. Anam, L. Lusiana, and S. Yaakub, “The Application of Naïve Bayes Classifier Based Feature Selection on Analysis of Online Learning Sentiment in Online Media,” J. Transform., vol. 20, no. 1, p. 44, 2022, doi: 10.26623/transformatika.v20i1.5144.
[10] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based transportation mode detection on smartphones,” SenSys 2013 - Proc. 11th ACM Conf. Embed. Networked Sens. Syst., 2013, doi: 10.1145/2517351.2517367.
[11] D. Septhya et al., “Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 15–19, 2023, doi: 10.57152/malcom.v3i1.591.
[12] C. Badii, A. Difino, P. Nesi, I. Paoli, and M. Paolucci, “Classification of users’ transportation modalities from mobiles in real operating conditions,” Multimed. Tools Appl., vol. 81, no. 1, pp. 115–140, 2022, doi: 10.1007/s11042-021-10993-y.
[13] I. M. Hamdani1 et al., “INTISARI Jurnal Inovasi Pengabdian Masyarakat Edukasi dan Pelatihan Data Science dan Data Preprocessing,” Juni, vol. 2, no. 1, pp. 19–26, 2024, doi: 10.58227/intisari.v2i1.125.
[14] M. P. Pulungan, A. Purnomo, and A. Kurniasih, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 7, pp. 1493–1502, 2023, doi: 10.25126/jtiik.1077989.
[15] D. Mualfah, W. Fadila, and R. Firdaus, “Teknik SMOTE untuk Mengatasi Imbalance Data pada Deteksi Penyakit Stroke Menggunakan Algoritma Random Forest,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 107–113, 2022, doi: 10.37859/coscitech.v3i2.3912.
[16] M. A. Rayadin, M. Musaruddin, R. A. Saputra, and I. Isnawaty, “Implementasi Ensemble Learning Metode XGBoost dan Random Forest untuk Prediksi Waktu Penggantian Baterai Aki,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 5, no. 2, pp. 111–119, 2024.
[17] R. A. Rizal, I. S. Girsang, and S. A. Prasetiyo, “Klasifikasi Wajah Menggunakan Support Vector Machine (SVM),” REMIK (Riset dan E-Jurnal Manaj. Inform. Komputer), vol. 3, no. 2, p. 1, 2019, doi: 10.33395/remik.v3i2.10080.
[18] M. D. Rahman, A. Djunaidy, and F. Mahananto, “Penerapan Weighted Word Embedding pada Pengklasifikasian Teks Berbasis Recurrent Neural Network untuk Layanan Pengaduan Perusahaan Transportasi,” J. Sains dan Seni ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373520.v10i1.56145.
[19] A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” J. Teknol. Inf., vol. 3, no. 2, p. 179, 2019, doi: 10.36294/jurti.v3i2.1077.
[20] H. Tao et al., “Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/8844367.
[21] E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, 2022, doi: 10.30812/matrik.v21i3.1726.
[22] S. Usman, “Predictive Sparepart Maintenance Menggunakan Algoritma Machine Learning Extreme Gradiant Boosting Regressor,” J. Syst. Comput. Eng., vol. 5, no. 2, pp. 249–258, 2024, doi: 10.61628/jsce.v5i2.1418.
[23] P. K. Handayani, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Analisis Pola Klasifikasi Pada Parkinson’S Dataset,” Indones. J. Technol. Informatics Sci., vol. 3, no. 1, pp. 31–35, 2021, doi: 10.24176/ijtis.v3i1.7530.
[24] W. Zhong and L. Du, “Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads,” Sustain., vol. 15, no. 4, 2023, doi: 10.3390/su15042944.
[25] T. Gori, A. Sunyoto, and H. Al Fatta, “Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 1, pp. 215–224, 2024, doi: 10.25126/jtiik.20241118074.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Informatika Dan Tekonologi Komputer (JITEK)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.